A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x – p1.x| + |p2.y – p1.y|.
For example, given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Java Solution
This problem is converted to find the median value on x-axis and y-axis.
public int minTotalDistance(int[][] grid) { int m=grid.length; int n=grid[0].length; ArrayList<Integer> cols = new ArrayList<Integer>(); ArrayList<Integer> rows = new ArrayList<Integer>(); for(int i=0; i<m; i++){ for(int j=0; j<n; j++){ if(grid[i][j]==1){ cols.add(j); rows.add(i); } } } int sum=0; for(Integer i: rows){ sum += Math.abs(i - rows.get(rows.size()/2)); } Collections.sort(cols); for(Integer i: cols){ sum+= Math.abs(i-cols.get(cols.size()/2)); } return sum; } |
Mohamed Shaban : Can you please elaborate the answer
weighted average – (start with index 1 to avoid multiplying by zero)
x = 1/3(1) + 1/3(1) + 1/3(3) = 5/3 = 1.6666 = 2
y = 1/3(1) + 1/3(3) + 1/3(5) = 3
What if question ask to find co-ordinates. How can we solve that? Thanks!