Given a binary tree, collect a tree’s nodes as if you were doing this: Collect and remove all leaves, repeat until the tree is empty.
Example:
Given binary tree
1 / \ 2 3 / \ 4 5
Returns [4, 5, 3], [2], [1].
Java Solution 1
Naively, we can get the order of each node, store them in a hashmap and then iterate over the hashmap to get the list.
public List<List<Integer>> findLeaves(TreeNode root) { HashMap<TreeNode, Integer> map=new HashMap<>(); helper(root, map); int min = Integer.MAX_VALUE; int max = Integer.MIN_VALUE; HashMap<Integer, HashSet<TreeNode>> reversed = new HashMap<>(); for(Map.Entry<TreeNode, Integer> entry: map.entrySet()){ min = Math.min(min, entry.getValue()); max = Math.max(max, entry.getValue()); HashSet<TreeNode> set = reversed.getOrDefault(entry.getValue(), new HashSet<TreeNode>()); set.add(entry.getKey()); reversed.put(entry.getValue(), set); } List<List<Integer>> result = new ArrayList<List<Integer>>(); for(int i=min; i<=max; i++){ HashSet<TreeNode> set = reversed.get(i); ArrayList<Integer> l = new ArrayList<>(); for(TreeNode td: set){ l.add(td.val); } result.add(l); } return result; } private int helper(TreeNode root, HashMap<TreeNode, Integer> map){ if(root==null){ return 0; } int left = helper(root.left, map); int right = helper(root.right, map); int order = Math.max(left, right)+1; map.put(root, order); return order; } |
Java Solution 2 – Optomized
The key to solve this problem is converting the problem to be finding the index of the element in the result list. Then this is a typical DFS problem on trees.
public List<List<Integer>> findLeaves(TreeNode root) { List<List<Integer>> result = new ArrayList<List<Integer>>(); helper(result, root); return result; } // traverse the tree bottom-up recursively private int helper(List<List<Integer>> list, TreeNode root){ if(root==null) return -1; int left = helper(list, root.left); int right = helper(list, root.right); int curr = Math.max(left, right)+1; // the first time this code is reached is when curr==0, //since the tree is bottom-up processed. if(list.size()<=curr){ list.add(new ArrayList<Integer>()); } list.get(curr).add(root.val); return curr; } |
public List<List> findLeaves(TreeNode root) {
List<List> returnResults = new ArrayList();
List results = new ArrayList();
Set alreadyChecked = new HashSet();
do {
results = new ArrayList();
findLeaves(root, alreadyChecked, results);
if (!results.isEmpty()) {
returnResults.add(results);
}
} while (!results.isEmpty());
return returnResults;
}
void findLeaves(TreeNode node, Set alreadyChecked, List results) {
if (node == null) {
return;
}
if ((alreadyChecked.contains(node.left) || node.left == null)
&& (alreadyChecked.contains(node.right) || node.right == null)) {
if (alreadyChecked.add(node)) {
results.add(node.val);
}
}
findLeaves(node.left, alreadyChecked, results);
findLeaves(node.right, alreadyChecked, results);
}
private static int findleaves(Node n,HashMap<Integer,List> map){
if(n==null) return 0;
int l=findleaves(n.left,map);
int r=findleaves(n.right,map);
int x=Math.max(l,r)+1;
if(map.containsKey(x)){ map.get(x).add(n.val);}
else{
List list=new ArrayList();
list.add(n.val);
map.put(x,list);
}
return x;
}