org.apache.commons.math3.ml.distance.EuclideanDistance Java Examples
The following examples show how to use
org.apache.commons.math3.ml.distance.EuclideanDistance.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: EuclideanDistanceEvaluator.java From lucene-solr with Apache License 2.0 | 6 votes |
@Override @SuppressWarnings({"unchecked"}) public Object doWork(Object first, Object second) throws IOException{ if(null == first){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the first value",toExpression(constructingFactory))); } if(null == second){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the second value",toExpression(constructingFactory))); } if(!(first instanceof List<?>)){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the first value, expecting a list of numbers",toExpression(constructingFactory), first.getClass().getSimpleName())); } if(!(second instanceof List<?>)){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the second value, expecting a list of numbers",toExpression(constructingFactory), first.getClass().getSimpleName())); } EuclideanDistance distance = new EuclideanDistance(); return distance.compute( ((List)first).stream().mapToDouble(value -> ((BigDecimal)value).doubleValue()).toArray(), ((List)second).stream().mapToDouble(value -> ((BigDecimal)value).doubleValue()).toArray() ); }
Example #2
Source File: WeightVectorNeighborhood.java From jMetal with MIT License | 6 votes |
private void initializeNeighborhood() { EuclideanDistance euclideanDistance = new EuclideanDistance(); double[] x = new double[numberOfWeightVectors]; int[] idx = new int[numberOfWeightVectors]; for (int i = 0; i < numberOfWeightVectors; i++) { // calculate the distances based on weight vectors for (int j = 0; j < numberOfWeightVectors; j++) { x[j] = euclideanDistance.compute(weightVector[i], weightVector[j]); idx[j] = j; } // find 'niche' nearest neighboring subproblems minFastSort(x, idx, numberOfWeightVectors, neighborhoodSize); System.arraycopy(idx, 0, neighborhood[i], 0, neighborhoodSize); } }
Example #3
Source File: HierarchicalClustering.java From HMMRATAC with GNU General Public License v3.0 | 6 votes |
private void iterate(){ ArrayList<ClusterNode> temp = new ArrayList<ClusterNode>(); EuclideanDistance ed = new EuclideanDistance(); for (int i = 0; i < clusters.size();i++){ double min = Double.POSITIVE_INFINITY; int best = -1; for (int a = 0; a < clusters.size();a++){ if (i != a){ double dis = ed.compute(clusters.get(i).getKey(), clusters.get(a).getKey()); if (dis < min){ min = dis; best = a; } } } } }
Example #4
Source File: KMeansPlusPlusClustererTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * 2 variables cannot be clustered into 3 clusters. See issue MATH-436. */ @Test(expected=NumberIsTooSmallException.class) public void testPerformClusterAnalysisToManyClusters() { KMeansPlusPlusClusterer<DoublePoint> transformer = new KMeansPlusPlusClusterer<DoublePoint>(3, 1, new EuclideanDistance(), random); DoublePoint[] points = new DoublePoint[] { new DoublePoint(new int[] { 1959, 325100 }), new DoublePoint(new int[] { 1960, 373200 }) }; transformer.cluster(Arrays.asList(points)); }
Example #5
Source File: KMeansPlusPlusClustererTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * 2 variables cannot be clustered into 3 clusters. See issue MATH-436. */ @Test(expected=NumberIsTooSmallException.class) public void testPerformClusterAnalysisToManyClusters() { KMeansPlusPlusClusterer<DoublePoint> transformer = new KMeansPlusPlusClusterer<DoublePoint>(3, 1, new EuclideanDistance(), random); DoublePoint[] points = new DoublePoint[] { new DoublePoint(new int[] { 1959, 325100 }), new DoublePoint(new int[] { 1960, 373200 }) }; transformer.cluster(Arrays.asList(points)); }
Example #6
Source File: KMeansPlusPlusClustererTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * 2 variables cannot be clustered into 3 clusters. See issue MATH-436. */ @Test(expected=NumberIsTooSmallException.class) public void testPerformClusterAnalysisToManyClusters() { KMeansPlusPlusClusterer<DoublePoint> transformer = new KMeansPlusPlusClusterer<DoublePoint>(3, 1, new EuclideanDistance(), random); DoublePoint[] points = new DoublePoint[] { new DoublePoint(new int[] { 1959, 325100 }), new DoublePoint(new int[] { 1960, 373200 }) }; transformer.cluster(Arrays.asList(points)); }
Example #7
Source File: KMeansPlusPlusClustererTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * 2 variables cannot be clustered into 3 clusters. See issue MATH-436. */ @Test(expected=NumberIsTooSmallException.class) public void testPerformClusterAnalysisToManyClusters() { KMeansPlusPlusClusterer<DoublePoint> transformer = new KMeansPlusPlusClusterer<DoublePoint>(3, 1, new EuclideanDistance(), random); DoublePoint[] points = new DoublePoint[] { new DoublePoint(new int[] { 1959, 325100 }), new DoublePoint(new int[] { 1960, 373200 }) }; transformer.cluster(Arrays.asList(points)); }
Example #8
Source File: DBScanModel.java From egads with GNU General Public License v3.0 | 5 votes |
@Override public void tune(DataSequence observedSeries, DataSequence expectedSeries) throws Exception { // Compute the time-series of errors. HashMap<String, ArrayList<Float>> allErrors = aes.initAnomalyErrors(observedSeries, expectedSeries); List<IdentifiedDoublePoint> points = new ArrayList<IdentifiedDoublePoint>(); EuclideanDistance ed = new EuclideanDistance(); int n = observedSeries.size(); for (int i = 0; i < n; i++) { double[] d = new double[(aes.getIndexToError().keySet()).size()]; for (int e = 0; e < (aes.getIndexToError().keySet()).size(); e++) { d[e] = allErrors.get(aes.getIndexToError().get(e)).get(i); } points.add(new IdentifiedDoublePoint(d, i)); } double sum = 0.0; double count = 0.0; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { sum += ed.compute(points.get(i).getPoint(), points.get(j).getPoint()); count++; } } eps = ((double) this.sDAutoSensitivity) * (sum / count); minPoints = ((int) Math.ceil(((double) this.amntAutoSensitivity) * ((double) n))); dbscan = new DBSCANClusterer<IdentifiedDoublePoint>(eps, minPoints); }
Example #9
Source File: FuzzyKmeansEvaluator.java From lucene-solr with Apache License 2.0 | 4 votes |
@Override @SuppressWarnings({"unchecked"}) public Object doWork(Object value1, Object value2) throws IOException { Matrix matrix = null; int k = 0; if(value1 instanceof Matrix) { matrix = (Matrix)value1; } else { throw new IOException("The first parameter for fuzzyKmeans should be the observation matrix."); } if(value2 instanceof Number) { k = ((Number)value2).intValue(); } else { throw new IOException("The second parameter for fuzzyKmeans should be k."); } @SuppressWarnings({"rawtypes"}) FuzzyKMeansClusterer<KmeansEvaluator.ClusterPoint> kmeans = new FuzzyKMeansClusterer(k, fuzziness, maxIterations, new EuclideanDistance()); List<KmeansEvaluator.ClusterPoint> points = new ArrayList<>(); double[][] data = matrix.getData(); List<String> ids = matrix.getRowLabels(); for(int i=0; i<data.length; i++) { double[] vec = data[i]; points.add(new KmeansEvaluator.ClusterPoint(ids.get(i), vec)); } @SuppressWarnings({"rawtypes"}) Map fields = new HashMap(); fields.put("k", k); fields.put("fuzziness", fuzziness); fields.put("distance", "euclidean"); fields.put("maxIterations", maxIterations); List<CentroidCluster<KmeansEvaluator.ClusterPoint>> clusters = kmeans.cluster(points); RealMatrix realMatrix = kmeans.getMembershipMatrix(); double[][] mmData = realMatrix.getData(); Matrix mmMatrix = new Matrix(mmData); mmMatrix.setRowLabels(matrix.getRowLabels()); List<String> clusterCols = new ArrayList<>(); for(int i=0; i<clusters.size(); i++) { clusterCols.add("cluster"+ ZplotStream.pad(Integer.toString(i), clusters.size())); } mmMatrix.setRowLabels(clusterCols); return new KmeansEvaluator.ClusterTuple(fields, clusters, matrix.getColumnLabels(),mmMatrix); }
Example #10
Source File: SumOfClusterVariancesTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Before public void setUp() { evaluator = new SumOfClusterVariances<DoublePoint>(new EuclideanDistance()); }
Example #11
Source File: SumOfClusterVariancesTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Before public void setUp() { evaluator = new SumOfClusterVariances<DoublePoint>(new EuclideanDistance()); }
Example #12
Source File: EuclideanEvaluator.java From lucene-solr with Apache License 2.0 | 4 votes |
@Override public Object evaluate(Tuple tuple) throws IOException { return new EuclideanDistance(); }
Example #13
Source File: Stats.java From gama with GNU General Public License v3.0 | 4 votes |
@operator ( value = "kmeans", can_be_const = false, type = IType.LIST, category = { IOperatorCategory.STATISTICAL }, concept = { IConcept.STATISTIC, IConcept.CLUSTERING }) @doc ( value = "returns the list of clusters (list of instance indices) computed with the kmeans++ " + "algorithm from the first operand data according to the number of clusters to split" + " the data into (k) and the maximum number of iterations to run the algorithm for " + "(If negative, no maximum will be used) (maxIt). Usage: kmeans(data,k,maxit)", special_cases = "if the lengths of two vectors in the right-hand aren't equal, returns 0", examples = { @example ( value = "kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2,10)", equals = "[[0,2,3],[1]]") }) public static IList<IList> KMeansPlusplusApache(final IScope scope, final IList data, final Integer k, final Integer maxIt) throws GamaRuntimeException { final MersenneTwister rand = new MersenneTwister(scope.getRandom().getSeed().longValue()); final List<DoublePoint> instances = new ArrayList<>(); for (int i = 0; i < data.size(); i++) { final IList d = (IList) data.get(i); final double point[] = new double[d.size()]; for (int j = 0; j < d.size(); j++) { point[j] = Cast.asFloat(scope, d.get(j)); } instances.add(new Instance(i, point)); } final KMeansPlusPlusClusterer<DoublePoint> kmeans = new KMeansPlusPlusClusterer<>(k, maxIt, new EuclideanDistance(), rand); final List<CentroidCluster<DoublePoint>> clusters = kmeans.cluster(instances); try (final Collector.AsList results = Collector.getList()) { for (final Cluster<DoublePoint> cl : clusters) { final IList clG = GamaListFactory.create(); for (final DoublePoint pt : cl.getPoints()) { clG.addValue(scope, ((Instance) pt).getId()); } results.add(clG); } return results.items(); } }
Example #14
Source File: FuzzyKMeansClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a FuzzyKMeansClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException { this(k, fuzziness, -1, new EuclideanDistance()); }
Example #15
Source File: DBSCANClusterer.java From egads with GNU General Public License v3.0 | 2 votes |
/** * Creates a new instance of a DBSCANClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param eps maximum radius of the neighborhood to be considered * @param minPts minimum number of points needed for a cluster * @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0} */ public DBSCANClusterer(final double eps, final int minPts) throws NotPositiveException { this(eps, minPts, new EuclideanDistance()); }
Example #16
Source File: FuzzyKMeansClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a FuzzyKMeansClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException { this(k, fuzziness, -1, new EuclideanDistance()); }
Example #17
Source File: KMeansPlusPlusClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** Build a clusterer. * <p> * The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. * If negative, no maximum will be used. */ public KMeansPlusPlusClusterer(final int k, final int maxIterations) { this(k, maxIterations, new EuclideanDistance()); }
Example #18
Source File: DBSCANClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a DBSCANClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param eps maximum radius of the neighborhood to be considered * @param minPts minimum number of points needed for a cluster * @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0} */ public DBSCANClusterer(final double eps, final int minPts) throws NotPositiveException { this(eps, minPts, new EuclideanDistance()); }
Example #19
Source File: ClusterEvaluator.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new cluster evaluator with an {@link EuclideanDistance} * as distance measure. */ public ClusterEvaluator() { this(new EuclideanDistance()); }
Example #20
Source File: ClusterEvaluator.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new cluster evaluator with an {@link EuclideanDistance} * as distance measure. */ public ClusterEvaluator() { this(new EuclideanDistance()); }
Example #21
Source File: FuzzyKMeansClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a FuzzyKMeansClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException { this(k, fuzziness, -1, new EuclideanDistance()); }
Example #22
Source File: KMeansPlusPlusClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** Build a clusterer. * <p> * The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. * If negative, no maximum will be used. */ public KMeansPlusPlusClusterer(final int k, final int maxIterations) { this(k, maxIterations, new EuclideanDistance()); }
Example #23
Source File: DBSCANClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a DBSCANClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param eps maximum radius of the neighborhood to be considered * @param minPts minimum number of points needed for a cluster * @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0} */ public DBSCANClusterer(final double eps, final int minPts) throws NotPositiveException { this(eps, minPts, new EuclideanDistance()); }
Example #24
Source File: DBSCANClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a DBSCANClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param eps maximum radius of the neighborhood to be considered * @param minPts minimum number of points needed for a cluster * @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0} */ public DBSCANClusterer(final double eps, final int minPts) throws NotPositiveException { this(eps, minPts, new EuclideanDistance()); }
Example #25
Source File: FuzzyKMeansClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a FuzzyKMeansClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException { this(k, fuzziness, -1, new EuclideanDistance()); }
Example #26
Source File: KMeansPlusPlusClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** Build a clusterer. * <p> * The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. * If negative, no maximum will be used. */ public KMeansPlusPlusClusterer(final int k, final int maxIterations) { this(k, maxIterations, new EuclideanDistance()); }
Example #27
Source File: DBSCANClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a new instance of a DBSCANClusterer. * <p> * The euclidean distance will be used as default distance measure. * * @param eps maximum radius of the neighborhood to be considered * @param minPts minimum number of points needed for a cluster * @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0} */ public DBSCANClusterer(final double eps, final int minPts) throws NotPositiveException { this(eps, minPts, new EuclideanDistance()); }
Example #28
Source File: KMeansPlusPlusClusterer.java From astor with GNU General Public License v2.0 | 2 votes |
/** Build a clusterer. * <p> * The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. * <p> * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for. * If negative, no maximum will be used. */ public KMeansPlusPlusClusterer(final int k, final int maxIterations) { this(k, maxIterations, new EuclideanDistance()); }