org.apache.spark.util.StatCounter Java Examples
The following examples show how to use
org.apache.spark.util.StatCounter.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: Main.java From SparkApps with Apache License 2.0 | 6 votes |
public static void main(String[] args) { //Sample test data - All numbers from 1 to 99999 List<Double> testData = IntStream.range(1, 100000).mapToDouble(d -> d).collect(ArrayList::new, ArrayList::add, ArrayList::addAll); JavaDoubleRDD rdd = sc.parallelizeDoubles(testData); LOGGER.info("Mean: " + rdd.mean()); //For efficiency, use StatCounter if more than one stats are required. StatCounter statCounter = rdd.stats(); LOGGER.info("Using StatCounter"); LOGGER.info("Count: " + statCounter.count()); LOGGER.info("Min: " + statCounter.min()); LOGGER.info("Max: " + statCounter.max()); LOGGER.info("Sum: " + statCounter.sum()); LOGGER.info("Mean: " + statCounter.mean()); LOGGER.info("Variance: " + statCounter.variance()); LOGGER.info("Stdev: " + statCounter.stdev()); }
Example #2
Source File: ALSUpdate.java From oryx with Apache License 2.0 | 6 votes |
/** * Implementation which splits based solely on time. It will return approximately * the earliest {@link #getTestFraction()} of input, ordered by timestamp, as new training * data and the rest as test data. */ @Override protected Pair<JavaRDD<String>,JavaRDD<String>> splitNewDataToTrainTest(JavaRDD<String> newData) { // Rough approximation; assumes timestamps are fairly evenly distributed StatCounter maxMin = newData.mapToDouble(line -> MLFunctions.TO_TIMESTAMP_FN.call(line).doubleValue()).stats(); long minTime = (long) maxMin.min(); long maxTime = (long) maxMin.max(); log.info("New data timestamp range: {} - {}", minTime, maxTime); long approxTestTrainBoundary = (long) (maxTime - getTestFraction() * (maxTime - minTime)); log.info("Splitting at timestamp {}", approxTestTrainBoundary); JavaRDD<String> newTrainData = newData.filter( line -> MLFunctions.TO_TIMESTAMP_FN.call(line) < approxTestTrainBoundary); JavaRDD<String> testData = newData.filter( line -> MLFunctions.TO_TIMESTAMP_FN.call(line) >= approxTestTrainBoundary); return new Pair<>(newTrainData, testData); }
Example #3
Source File: Main.java From SparkApps with Apache License 2.0 | 6 votes |
public static void main(String[] args) { //Sample test data - All numbers from 1 to 99999 List<Double> testData = IntStream.range(1, 100000).mapToDouble(d -> d).collect(ArrayList::new, ArrayList::add, ArrayList::addAll); JavaDoubleRDD rdd = sc.parallelizeDoubles(testData); LOGGER.info("Mean: " + rdd.mean()); //For efficiency, use StatCounter if more than one stats are required. StatCounter statCounter = rdd.stats(); LOGGER.info("Using StatCounter"); LOGGER.info("Count: " + statCounter.count()); LOGGER.info("Min: " + statCounter.min()); LOGGER.info("Max: " + statCounter.max()); LOGGER.info("Sum: " + statCounter.sum()); LOGGER.info("Mean: " + statCounter.mean()); LOGGER.info("Variance: " + statCounter.variance()); LOGGER.info("Stdev: " + statCounter.stdev()); }