org.apache.commons.math3.distribution.ConstantRealDistribution Java Examples
The following examples show how to use
org.apache.commons.math3.distribution.ConstantRealDistribution.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SyntheticBoundedSourceTest.java From beam with Apache License 2.0 | 6 votes |
@Test public void testSplitIntoSingleRecordBundles() throws Exception { PipelineOptions options = PipelineOptionsFactory.create(); SyntheticSourceOptions sourceOptions = new SyntheticSourceOptions(); sourceOptions.numRecords = 10; sourceOptions.setSeed(123456); sourceOptions.bundleSizeDistribution = fromRealDistribution(new ConstantRealDistribution(1.0)); sourceOptions.forceNumInitialBundles = 10; SyntheticBoundedSource source = new SyntheticBoundedSource(sourceOptions); List<SyntheticBoundedSource> sources = source.split(42L, options); for (SyntheticBoundedSource recordSource : sources) { recordSource.validate(); assertEquals(1, recordSource.getEndOffset() - recordSource.getStartOffset()); } SourceTestUtils.assertSourcesEqualReferenceSource(source, sources, options); }
Example #2
Source File: ConstantDistributionEvaluator.java From lucene-solr with Apache License 2.0 | 5 votes |
@Override public Object doWork(Object first) throws IOException{ if(null == first){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the first value",toExpression(constructingFactory))); } Number constant = (Number)first; return new ConstantRealDistribution(constant.doubleValue()); }
Example #3
Source File: BundleSplitterTest.java From beam with Apache License 2.0 | 5 votes |
@Test public void bundlesShouldBeEvenForConstDistribution() { long expectedBundleSize = 2; options.bundleSizeDistribution = fromRealDistribution(new ConstantRealDistribution(2)); splitter = new BundleSplitter(options); List<OffsetRange> bundleSizes = splitter.getBundleSizes(4, 0, options.numRecords); bundleSizes.stream() .map(range -> range.getTo() - range.getFrom()) .forEach(size -> assertEquals(expectedBundleSize, size.intValue())); }
Example #4
Source File: BundleSplitterTest.java From beam with Apache License 2.0 | 5 votes |
@Test public void bundleSizesShouldBeProportionalToTheOneSuggestedInBundleSizeDistribution() { long expectedBundleSize = 4; options.bundleSizeDistribution = fromRealDistribution(new ConstantRealDistribution(2)); options.numRecords = 16; splitter = new BundleSplitter(options); List<OffsetRange> bundleSizes = splitter.getBundleSizes(4, 0, options.numRecords); bundleSizes.stream() .map(range -> range.getTo() - range.getFrom()) .forEach(size -> assertEquals(expectedBundleSize, size.intValue())); }
Example #5
Source File: BundleSplitterTest.java From beam with Apache License 2.0 | 5 votes |
@Test public void consequentBundlesShouldHaveTheSameRangeEndAndStart() { int desiredNumberOfBundles = 2; options.bundleSizeDistribution = fromRealDistribution(new ConstantRealDistribution(2)); splitter = new BundleSplitter(options); List<OffsetRange> bundleSizes = splitter.getBundleSizes(desiredNumberOfBundles, 0, options.numRecords); assertEquals(bundleSizes.get(0).getTo(), bundleSizes.get(1).getFrom()); assertEquals(bundleSizes.get(0).getTo(), bundleSizes.get(1).getFrom()); assertEquals(desiredNumberOfBundles, bundleSizes.size()); }
Example #6
Source File: SyntheticStepTest.java From beam with Apache License 2.0 | 5 votes |
@Test public void testSyntheticStepWithPreservingInputKeyDistribution() throws Exception { SyntheticStep.Options options = SyntheticTestUtils.optionsFromString( "{\"outputRecordsPerInputRecord\": 2," + " \"preservesInputKeyDistribution\": true," + "\"keySizeBytes\": 10," + "\"valueSizeBytes\": 20," + "\"numHotKeys\": 3," + "\"hotKeyFraction\": 0.3," + "\"seed\": 123456}", SyntheticStep.Options.class); options.delayDistribution = SyntheticOptions.fromRealDistribution(new ConstantRealDistribution(10)); PCollection<byte[]> result = p.apply( Create.of( ImmutableList.of( KV.of(intToByteArray(1), intToByteArray(11)), KV.of(intToByteArray(2), intToByteArray(22)), KV.of(intToByteArray(3), intToByteArray(33))))) .apply(ParDo.of(new SyntheticStep(options))) .apply(Keys.create()); List<byte[]> expected = ImmutableList.of( intToByteArray(1), intToByteArray(1), intToByteArray(2), intToByteArray(2), intToByteArray(3), intToByteArray(3)); PAssert.that(result).containsInAnyOrder(expected); p.run().waitUntilFinish(); }
Example #7
Source File: SyntheticStepTest.java From beam with Apache License 2.0 | 5 votes |
@Test public void testSyntheticStepWithoutPreservingInputKeyDistribution() throws Exception { SyntheticStep.Options options = SyntheticTestUtils.optionsFromString( "{\"outputRecordsPerInputRecord\": 2," + " \"preservesInputKeyDistribution\": false," + "\"keySizeBytes\": 10," + "\"valueSizeBytes\": 20," + "\"numHotKeys\": 3," + "\"hotKeyFraction\": 0.3," + "\"seed\": 123456}", SyntheticStep.Options.class); options.delayDistribution = SyntheticOptions.fromRealDistribution(new ConstantRealDistribution(10)); PCollection<KV<byte[], byte[]>> result = p.apply(Create.of(ImmutableList.of(KV.of(intToByteArray(1), intToByteArray(11))))) .apply(ParDo.of(new SyntheticStep(options))); PAssert.that(result) .satisfies( (Iterable<KV<byte[], byte[]>> input) -> { int count = 0; for (KV<byte[], byte[]> elm : input) { count += 1; assertEquals(10, elm.getKey().length); assertEquals(20, elm.getValue().length); } assertEquals(2, count); return null; }); p.run().waitUntilFinish(); }
Example #8
Source File: EmpiricalDistribution.java From astor with GNU General Public License v2.0 | 5 votes |
/** * The within-bin smoothing kernel. Returns a Gaussian distribution * parameterized by {@code bStats}, unless the bin contains only one * observation, in which case a constant distribution is returned. * * @param bStats summary statistics for the bin * @return within-bin kernel parameterized by bStats */ protected RealDistribution getKernel(SummaryStatistics bStats) { if (bStats.getN() == 1) { return new ConstantRealDistribution(bStats.getMean()); } else { return new NormalDistribution(randomData.getRandomGenerator(), bStats.getMean(), bStats.getStandardDeviation(), NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } }
Example #9
Source File: EmpiricalDistribution.java From astor with GNU General Public License v2.0 | 5 votes |
/** * The within-bin smoothing kernel. Returns a Gaussian distribution * parameterized by {@code bStats}, unless the bin contains only one * observation, in which case a constant distribution is returned. * * @param bStats summary statistics for the bin * @return within-bin kernel parameterized by bStats */ protected RealDistribution getKernel(SummaryStatistics bStats) { if (bStats.getN() == 1) { return new ConstantRealDistribution(bStats.getMean()); } else { return new NormalDistribution(randomData.getRandomGenerator(), bStats.getMean(), bStats.getStandardDeviation(), NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } }
Example #10
Source File: EmpiricalDistributionTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Override protected RealDistribution getKernel(SummaryStatistics bStats) { return new ConstantRealDistribution(bStats.getMean()); }
Example #11
Source File: EmpiricalDistributionTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Override protected RealDistribution getKernel(SummaryStatistics bStats) { return new ConstantRealDistribution(bStats.getMean()); }