org.apache.flink.api.common.aggregators.DoubleSumAggregator Java Examples
The following examples show how to use
org.apache.flink.api.common.aggregators.DoubleSumAggregator.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: HITS.java From Flink-CEPplus with Apache License 2.0 | 5 votes |
@Override public void close() throws Exception { super.close(); DoubleSumAggregator agg = getIterationRuntimeContext().getIterationAggregator(CHANGE_IN_SCORES); agg.aggregate(changeInScores); }
Example #2
Source File: PageRank.java From Flink-CEPplus with Apache License 2.0 | 5 votes |
@Override public void close() throws Exception { super.close(); DoubleSumAggregator agg = getIterationRuntimeContext().getIterationAggregator(CHANGE_IN_SCORES); agg.aggregate(changeInScores); }
Example #3
Source File: HITS.java From flink with Apache License 2.0 | 5 votes |
@Override public void close() throws Exception { super.close(); DoubleSumAggregator agg = getIterationRuntimeContext().getIterationAggregator(CHANGE_IN_SCORES); agg.aggregate(changeInScores); }
Example #4
Source File: PageRank.java From flink with Apache License 2.0 | 5 votes |
@Override public void close() throws Exception { super.close(); DoubleSumAggregator agg = getIterationRuntimeContext().getIterationAggregator(CHANGE_IN_SCORES); agg.aggregate(changeInScores); }
Example #5
Source File: HITS.java From flink with Apache License 2.0 | 5 votes |
@Override public void close() throws Exception { super.close(); DoubleSumAggregator agg = getIterationRuntimeContext().getIterationAggregator(CHANGE_IN_SCORES); agg.aggregate(changeInScores); }
Example #6
Source File: PageRank.java From flink with Apache License 2.0 | 5 votes |
@Override public void close() throws Exception { super.close(); DoubleSumAggregator agg = getIterationRuntimeContext().getIterationAggregator(CHANGE_IN_SCORES); agg.aggregate(changeInScores); }
Example #7
Source File: PageRank.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example #8
Source File: PageRank.java From flink with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example #9
Source File: PageRank.java From flink with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example #10
Source File: dVMP.java From toolbox with Apache License 2.0 | 4 votes |
@Override public double updateModel(DataFlink<DataInstance> dataUpdate){ try{ final ExecutionEnvironment env = dataUpdate.getDataSet().getExecutionEnvironment(); // get input data CompoundVector parameterPrior = this.svb.getNaturalParameterPrior(); DataSet<CompoundVector> paramSet = env.fromElements(parameterPrior); ConvergenceCriterion convergenceELBO; if(timeLimit == -1) { convergenceELBO = new ConvergenceELBO(this.globalThreshold, System.nanoTime()); } else { convergenceELBO = new ConvergenceELBObyTime(this.timeLimit, System.nanoTime()); this.setMaximumGlobalIterations(5000); } // set number of bulk iterations for KMeans algorithm IterativeDataSet<CompoundVector> loop = paramSet.iterate(maximumGlobalIterations) .registerAggregationConvergenceCriterion("ELBO_" + this.getName(), new DoubleSumAggregator(),convergenceELBO); Configuration config = new Configuration(); config.setString(ParameterLearningAlgorithm.BN_NAME, this.getName()); config.setBytes(SVB, Serialization.serializeObject(svb)); //We add an empty batched data set to emit the updated prior. DataOnMemory<DataInstance> emtpyBatch = new DataOnMemoryListContainer<DataInstance>(dataUpdate.getAttributes()); DataSet<DataOnMemory<DataInstance>> unionData = null; unionData = dataUpdate.getBatchedDataSet(this.batchSize, batchConverter) .union(env.fromCollection(Arrays.asList(emtpyBatch), TypeExtractor.getForClass((Class<DataOnMemory<DataInstance>>) Class.forName("eu.amidst.core.datastream.DataOnMemory")))); DataSet<CompoundVector> newparamSet = unionData .map(new ParallelVBMap(randomStart, idenitifableModelling)) .withParameters(config) .withBroadcastSet(loop, "VB_PARAMS_" + this.getName()) .reduce(new ParallelVBReduce()); // feed new centroids back into next iteration DataSet<CompoundVector> finlparamSet = loop.closeWith(newparamSet); parameterPrior = finlparamSet.collect().get(0); this.svb.updateNaturalParameterPosteriors(parameterPrior); this.svb.updateNaturalParameterPrior(parameterPrior); if(timeLimit == -1) this.globalELBO = ((ConvergenceELBO)loop.getAggregators().getConvergenceCriterion()).getELBO(); else this.globalELBO = ((ConvergenceELBObyTime)loop.getAggregators().getConvergenceCriterion()).getELBO(); this.svb.applyTransition(); }catch(Exception ex){ System.out.println(ex.getMessage().toString()); ex.printStackTrace(); throw new RuntimeException(ex.getMessage()); } this.randomStart=false; return this.getLogMarginalProbability(); }
Example #11
Source File: ParallelVB.java From toolbox with Apache License 2.0 | 4 votes |
public double updateModel(DataFlink<DataInstance> dataUpdate){ try{ final ExecutionEnvironment env = dataUpdate.getDataSet().getExecutionEnvironment(); // get input data CompoundVector parameterPrior = this.svb.getNaturalParameterPrior(); DataSet<CompoundVector> paramSet = env.fromElements(parameterPrior); ConvergenceCriterion convergenceELBO; if(timeLimit == -1) { convergenceELBO = new ConvergenceELBO(this.globalThreshold, System.nanoTime()); } else { convergenceELBO = new ConvergenceELBObyTime(this.timeLimit, System.nanoTime()); this.setMaximumGlobalIterations(5000); } // set number of bulk iterations for KMeans algorithm IterativeDataSet<CompoundVector> loop = paramSet.iterate(maximumGlobalIterations) .registerAggregationConvergenceCriterion("ELBO_" + this.dag.getName(), new DoubleSumAggregator(),convergenceELBO); Configuration config = new Configuration(); config.setString(ParameterLearningAlgorithm.BN_NAME, this.dag.getName()); config.setBytes(SVB, Serialization.serializeObject(svb)); //We add an empty batched data set to emit the updated prior. DataOnMemory<DataInstance> emtpyBatch = new DataOnMemoryListContainer<DataInstance>(dataUpdate.getAttributes()); DataSet<DataOnMemory<DataInstance>> unionData = null; unionData = dataUpdate.getBatchedDataSet(this.batchSize) .union(env.fromCollection(Arrays.asList(emtpyBatch), TypeExtractor.getForClass((Class<DataOnMemory<DataInstance>>) Class.forName("eu.amidst.core.datastream.DataOnMemory")))); DataSet<CompoundVector> newparamSet = unionData .map(new ParallelVBMap(randomStart, idenitifableModelling)) .withParameters(config) .withBroadcastSet(loop, "VB_PARAMS_" + this.dag.getName()) .reduce(new ParallelVBReduce()); // feed new centroids back into next iteration DataSet<CompoundVector> finlparamSet = loop.closeWith(newparamSet); parameterPrior = finlparamSet.collect().get(0); this.svb.updateNaturalParameterPosteriors(parameterPrior); this.svb.updateNaturalParameterPrior(parameterPrior); if(timeLimit == -1) this.globalELBO = ((ConvergenceELBO)loop.getAggregators().getConvergenceCriterion()).getELBO(); else this.globalELBO = ((ConvergenceELBObyTime)loop.getAggregators().getConvergenceCriterion()).getELBO(); this.svb.applyTransition(); }catch(Exception ex){ throw new RuntimeException(ex.getMessage()); } this.randomStart=false; return this.getLogMarginalProbability(); }
Example #12
Source File: DistributedVI.java From toolbox with Apache License 2.0 | 4 votes |
@Override public double updateModel(DataFlink<DataInstance> dataUpdate){ try{ final ExecutionEnvironment env = dataUpdate.getDataSet().getExecutionEnvironment(); // get input data CompoundVector parameterPrior = this.svb.getNaturalParameterPrior(); DataSet<CompoundVector> paramSet = env.fromElements(parameterPrior); ConvergenceCriterion convergenceELBO; if(timeLimit == -1) { convergenceELBO = new ConvergenceELBO(this.globalThreshold, System.nanoTime()); } else { convergenceELBO = new ConvergenceELBObyTime(this.timeLimit, System.nanoTime()); this.setMaximumGlobalIterations(5000); } // set number of bulk iterations for KMeans algorithm IterativeDataSet<CompoundVector> loop = paramSet.iterate(maximumGlobalIterations) .registerAggregationConvergenceCriterion("ELBO_" + this.dag.getName(), new DoubleSumAggregator(),convergenceELBO); Configuration config = new Configuration(); config.setString(ParameterLearningAlgorithm.BN_NAME, this.dag.getName()); config.setBytes(SVB, Serialization.serializeObject(svb)); //We add an empty batched data set to emit the updated prior. DataOnMemory<DataInstance> emtpyBatch = new DataOnMemoryListContainer<DataInstance>(dataUpdate.getAttributes()); DataSet<DataOnMemory<DataInstance>> unionData = null; unionData = dataUpdate.getBatchedDataSet(this.batchSize) .union(env.fromCollection(Arrays.asList(emtpyBatch), TypeExtractor.getForClass((Class<DataOnMemory<DataInstance>>) Class.forName("eu.amidst.core.datastream.DataOnMemory")))); DataSet<CompoundVector> newparamSet = unionData .map(new ParallelVBMap(randomStart, idenitifableModelling)) .withParameters(config) .withBroadcastSet(loop, "VB_PARAMS_" + this.dag.getName()) .reduce(new ParallelVBReduce()); // feed new centroids back into next iteration DataSet<CompoundVector> finlparamSet = loop.closeWith(newparamSet); parameterPrior = finlparamSet.collect().get(0); this.svb.updateNaturalParameterPosteriors(parameterPrior); this.svb.updateNaturalParameterPrior(parameterPrior); if(timeLimit == -1) this.globalELBO = ((ConvergenceELBO)loop.getAggregators().getConvergenceCriterion()).getELBO(); else this.globalELBO = ((ConvergenceELBObyTime)loop.getAggregators().getConvergenceCriterion()).getELBO(); this.svb.applyTransition(); }catch(Exception ex){ throw new RuntimeException(ex.getMessage()); } this.randomStart=false; return this.getLogMarginalProbability(); }
Example #13
Source File: dVMPv1.java From toolbox with Apache License 2.0 | 4 votes |
public double updateModel(DataFlink<DataInstance> dataUpdate){ try{ final ExecutionEnvironment env = dataUpdate.getDataSet().getExecutionEnvironment(); // get input data CompoundVector parameterPrior = this.svb.getNaturalParameterPrior(); DataSet<CompoundVector> paramSet = env.fromElements(parameterPrior); ConvergenceCriterion convergenceELBO; if(timeLimit == -1) { convergenceELBO = new ConvergenceELBO(this.globalThreshold, System.nanoTime()); } else { convergenceELBO = new ConvergenceELBObyTime(this.timeLimit, System.nanoTime(), this.idenitifableModelling.getNumberOfEpochs()); this.setMaximumGlobalIterations(5000); } // set number of bulk iterations for KMeans algorithm IterativeDataSet<CompoundVector> loop = paramSet.iterate(maximumGlobalIterations) .registerAggregationConvergenceCriterion("ELBO_" + this.dag.getName(), new DoubleSumAggregator(),convergenceELBO); Configuration config = new Configuration(); config.setString(ParameterLearningAlgorithm.BN_NAME, this.dag.getName()); config.setBytes(SVB, Serialization.serializeObject(svb)); //We add an empty batched data set to emit the updated prior. DataOnMemory<DataInstance> emtpyBatch = new DataOnMemoryListContainer<DataInstance>(dataUpdate.getAttributes()); DataSet<DataOnMemory<DataInstance>> unionData = null; unionData = dataUpdate.getBatchedDataSet(this.batchSize) .union(env.fromCollection(Arrays.asList(emtpyBatch), TypeExtractor.getForClass((Class<DataOnMemory<DataInstance>>) Class.forName("eu.amidst.core.datastream.DataOnMemory")))); DataSet<CompoundVector> newparamSet = unionData .map(new ParallelVBMap(randomStart, idenitifableModelling)) .withParameters(config) .withBroadcastSet(loop, "VB_PARAMS_" + this.dag.getName()) .reduce(new ParallelVBReduce()); // feed new centroids back into next iteration DataSet<CompoundVector> finlparamSet = loop.closeWith(newparamSet); parameterPrior = finlparamSet.collect().get(0); this.svb.updateNaturalParameterPosteriors(parameterPrior); this.svb.updateNaturalParameterPrior(parameterPrior); if(timeLimit == -1) this.globalELBO = ((ConvergenceELBO)loop.getAggregators().getConvergenceCriterion()).getELBO(); else this.globalELBO = ((ConvergenceELBObyTime)loop.getAggregators().getConvergenceCriterion()).getELBO(); this.svb.applyTransition(); }catch(Exception ex){ System.out.println(ex.getMessage().toString()); ex.printStackTrace(); throw new RuntimeException(ex.getMessage()); } this.randomStart=false; return this.getLogMarginalProbability(); }