org.apache.flink.streaming.util.serialization.SimpleStringSchema Java Examples
The following examples show how to use
org.apache.flink.streaming.util.serialization.SimpleStringSchema.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: WriteIntoKafka.java From kafka-example with Apache License 2.0 | 6 votes |
public static void main(String[] args) throws Exception { // create execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // parse user parameters ParameterTool parameterTool = ParameterTool.fromArgs(args); // add a simple source which is writing some strings DataStream<String> messageStream = env.addSource(new SimpleStringGenerator()); // write stream to Kafka messageStream.addSink(new KafkaSink<>(parameterTool.getRequired("bootstrap.servers"), parameterTool.getRequired("topic"), new SimpleStringSchema())); env.execute(); }
Example #2
Source File: ReadFromKafka.java From kafka-example with Apache License 2.0 | 6 votes |
public static void main(String[] args) throws Exception { // create execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // parse user parameters ParameterTool parameterTool = ParameterTool.fromArgs(args); DataStream<String> messageStream = env.addSource(new FlinkKafkaConsumer082<>(parameterTool.getRequired("topic"), new SimpleStringSchema(), parameterTool.getProperties())); // print() will write the contents of the stream to the TaskManager's standard out stream // the rebelance call is causing a repartitioning of the data so that all machines // see the messages (for example in cases when "num kafka partitions" < "num flink operators" messageStream.rebalance().map(new MapFunction<String, String>() { private static final long serialVersionUID = -6867736771747690202L; @Override public String map(String value) throws Exception { return "Kafka and Flink says: " + value; } }).print(); env.execute(); }
Example #3
Source File: ReadFromKafka.java From kafka-flink-101 with Apache License 2.0 | 6 votes |
public static void main(String[] args) throws Exception { // create execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); properties.setProperty("group.id", "flink_consumer"); DataStream<String> stream = env .addSource(new FlinkKafkaConsumer09<>("flink-demo", new SimpleStringSchema(), properties)); stream.map(new MapFunction<String, String>() { private static final long serialVersionUID = -6867736771747690202L; @Override public String map(String value) throws Exception { return "Stream Value: " + value; } }).print(); env.execute(); }
Example #4
Source File: AdvertisingTopologyFlinkState.java From yahoo-streaming-benchmark with Apache License 2.0 | 5 votes |
/** * Create a Kafka source */ private static FlinkKafkaConsumer082<String> kafkaSource(BenchmarkConfig config) { return new FlinkKafkaConsumer082<>( config.kafkaTopic, new SimpleStringSchema(), config.getParameters().getProperties()); }
Example #5
Source File: KafkaWindowedWordCountExample.java From flink-dataflow with Apache License 2.0 | 5 votes |
public static void main(String[] args) { PipelineOptionsFactory.register(KafkaStreamingWordCountOptions.class); KafkaStreamingWordCountOptions options = PipelineOptionsFactory.fromArgs(args).as(KafkaStreamingWordCountOptions.class); options.setJobName("KafkaExample - WindowSize: " + options.getWindowSize() + " seconds"); options.setStreaming(true); options.setCheckpointingInterval(1000L); options.setNumberOfExecutionRetries(5); options.setExecutionRetryDelay(3000L); options.setRunner(FlinkPipelineRunner.class); System.out.println(options.getKafkaTopic() +" "+ options.getZookeeper() +" "+ options.getBroker() +" "+ options.getGroup() ); Pipeline pipeline = Pipeline.create(options); Properties p = new Properties(); p.setProperty("zookeeper.connect", options.getZookeeper()); p.setProperty("bootstrap.servers", options.getBroker()); p.setProperty("group.id", options.getGroup()); // this is the Flink consumer that reads the input to // the program from a kafka topic. FlinkKafkaConsumer08<String> kafkaConsumer = new FlinkKafkaConsumer08<>( options.getKafkaTopic(), new SimpleStringSchema(), p); PCollection<String> words = pipeline .apply(Read.from(new UnboundedFlinkSource<>(kafkaConsumer)).named("StreamingWordCount")) .apply(ParDo.of(new ExtractWordsFn())) .apply(Window.<String>into(FixedWindows.of(Duration.standardSeconds(options.getWindowSize()))) .triggering(AfterWatermark.pastEndOfWindow()).withAllowedLateness(Duration.ZERO) .discardingFiredPanes()); PCollection<KV<String, Long>> wordCounts = words.apply(Count.<String>perElement()); wordCounts.apply(ParDo.of(new FormatAsStringFn())) .apply(TextIO.Write.to("./outputKafka.txt")); pipeline.run(); }
Example #6
Source File: AdvertisingTopologyNative.java From yahoo-streaming-benchmark with Apache License 2.0 | 5 votes |
/** * Create Kafka Source */ private static FlinkKafkaConsumer082<String> kafkaSource(BenchmarkConfig config) { return new FlinkKafkaConsumer082<>( config.kafkaTopic, new SimpleStringSchema(), config.getParameters().getProperties()); }
Example #7
Source File: AdvertisingTopologyFlinkWindows.java From yahoo-streaming-benchmark with Apache License 2.0 | 5 votes |
/** * Configure Kafka source */ private static FlinkKafkaConsumer082<String> kafkaSource(BenchmarkConfig config) { return new FlinkKafkaConsumer082<>( config.kafkaTopic, new SimpleStringSchema(), config.getParameters().getProperties()); }
Example #8
Source File: AdvertisingTopologyRedisDirect.java From yahoo-streaming-benchmark with Apache License 2.0 | 5 votes |
/** * Choose either Kafka or data generator as source */ private static DataStream<String> sourceStream(BenchmarkConfig config, StreamExecutionEnvironment env) { RichParallelSourceFunction<String> source; String sourceName; if (config.useLocalEventGenerator) { HighKeyCardinalityGeneratorSource eventGenerator = new HighKeyCardinalityGeneratorSource(config); source = eventGenerator; sourceName = "EventGenerator"; } else { source = new FlinkKafkaConsumer082<>(config.kafkaTopic, new SimpleStringSchema(), config.getParameters().getProperties()); sourceName = "Kafka"; } return env.addSource(source, sourceName); }
Example #9
Source File: FlinkKafkaSourceExample.java From huaweicloud-cs-sdk with Apache License 2.0 | 5 votes |
public void readKafka() { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); DataStream<String> messageStream = env.addSource(new FlinkKafkaConsumer010<String>(topic, new SimpleStringSchema(), properties)); messageStream.rebalance().print(); try { env.execute(); }catch(Exception e) { System.out.println(e.getMessage()); } }
Example #10
Source File: AdvertisingTopologyFlinkStateHighKeyCard.java From yahoo-streaming-benchmark with Apache License 2.0 | 5 votes |
/** * Setup kafka source */ private static FlinkKafkaConsumer08<String> kafkaSource(BenchmarkConfig config) { return new FlinkKafkaConsumer08<>( config.kafkaTopic, new SimpleStringSchema(), config.getParameters().getProperties()); }
Example #11
Source File: KafkaTopicValidator.java From yahoo-streaming-benchmark with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { final ParameterTool parameterTool = ParameterTool.fromArgs(args); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.getConfig().setGlobalJobParameters(parameterTool); DataStream<String> rawMessageStream = env.addSource(new FlinkKafkaConsumer082<>( parameterTool.getRequired("kafka.topic"), new SimpleStringSchema(), parameterTool.getProperties())); rawMessageStream.print(); env.execute(); }
Example #12
Source File: TwitterIntoKafka.java From flink-streaming-etl with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { // set up the streaming execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); ParameterTool params = ParameterTool.fromPropertiesFile(args[0]); DataStream<String> twitterStreamString = env.addSource(new TwitterSource(params.getProperties())); DataStream<String> filteredStream = twitterStreamString.flatMap(new ParseJson()); filteredStream.flatMap(new ThroughputLogger(5000L)).setParallelism(1); filteredStream.addSink(new FlinkKafkaProducer09<>("twitter", new SimpleStringSchema(), params.getProperties())); // execute program env.execute("Ingest data from Twitter to Kafka"); }
Example #13
Source File: WriteToKafka.java From kafka-flink-101 with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); DataStream<String> stream = env.addSource(new SimpleStringGenerator()); stream.addSink(new FlinkKafkaProducer09<>("flink-demo", new SimpleStringSchema(), properties)); env.execute(); }
Example #14
Source File: WriteIntoKafka.java From flinkDemo with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws Exception { // create execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Map properties= new HashMap(); properties.put("bootstrap.servers", "192.168.10.63:6667,192.168.10.64:6667,192.168.10.65:6667"); properties.put("group.id", "t10"); properties.put("enable.auto.commit", "false"); properties.put("auto.commit.interval.ms", "1000"); properties.put("auto.offset.reset", "earliest"); properties.put("session.timeout.ms", "30000"); properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("topic", "kks-topic-FFT"); //KafkaConsumer<String,String> kafkaConsumer = new KafkaConsumer<String, String>(properties); // parse user parameters //ParameterTool parameterTool = ParameterTool.fromArgs(args); ParameterTool parameterTool = ParameterTool.fromMap(properties); // add a simple source which is writing some strings DataStream<String> messageStream = env.addSource(new SimpleStringGenerator()); // write stream to Kafka messageStream.addSink(new FlinkKafkaProducer010<>(parameterTool.getRequired("bootstrap.servers"), parameterTool.getRequired("topic"), new SimpleStringSchema())); messageStream.rebalance().map(new MapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override public String map(String value) throws Exception { return value; } }); messageStream.print(); env.execute(); }
Example #15
Source File: FlinkKafkaSinkExample.java From huaweicloud-cs-sdk with Apache License 2.0 | 5 votes |
public void writeKafka() { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); DataStream<String> messageStream = env.addSource(new KafkaSourceGenerator()); messageStream.addSink(new FlinkKafkaProducer010<String>(topic, new SimpleStringSchema(), properties)); try { env.execute(); }catch(Exception e) { System.out.println(e.getMessage()); } }
Example #16
Source File: StreamingJob.java From Mastering-Apache-Flink with MIT License | 4 votes |
public static void main(String[] args) throws Exception { // set up the streaming execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // env.enableCheckpointing(5000); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); properties.setProperty("zookeeper.connect", "localhost:2181"); properties.setProperty("group.id", "test"); FlinkKafkaConsumer09<String> myConsumer = new FlinkKafkaConsumer09<>("temp", new SimpleStringSchema(), properties); myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter()); DataStream<Tuple2<String, Double>> keyedStream = env.addSource(myConsumer).flatMap(new Splitter()).keyBy(0) .timeWindow(Time.seconds(300)) .apply(new WindowFunction<Tuple2<String, Double>, Tuple2<String, Double>, Tuple, TimeWindow>() { @Override public void apply(Tuple key, TimeWindow window, Iterable<Tuple2<String, Double>> input, Collector<Tuple2<String, Double>> out) throws Exception { double sum = 0L; int count = 0; for (Tuple2<String, Double> record : input) { sum += record.f1; count++; } Tuple2<String, Double> result = input.iterator().next(); result.f1 = (sum/count); out.collect(result); } }); keyedStream.print(); // execute program env.execute("Flink Streaming Java API Skeleton"); }
Example #17
Source File: UnitTestSuiteFlink.java From df_data_service with Apache License 2.0 | 4 votes |
public static void testFlinkSQL() { LOG.info("Only Unit Testing Function is enabled"); String resultFile = "/home/vagrant/test.txt"; try { String jarPath = DFInitService.class.getProtectionDomain().getCodeSource().getLocation().getPath(); StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", 6123, jarPath) .setParallelism(1); String kafkaTopic = "finance"; String kafkaTopic_stage = "df_trans_stage_finance"; String kafkaTopic_out = "df_trans_out_finance"; StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); properties.setProperty("group.id", "consumer3"); // Internal covert Json String to Json - Begin DataStream<String> stream = env .addSource(new FlinkKafkaConsumer09<>(kafkaTopic, new SimpleStringSchema(), properties)); stream.map(new MapFunction<String, String>() { @Override public String map(String jsonString) throws Exception { return jsonString.replaceAll("\\\\", "").replace("\"{", "{").replace("}\"","}"); } }).addSink(new FlinkKafkaProducer09<String>("localhost:9092", kafkaTopic_stage, new SimpleStringSchema())); // Internal covert Json String to Json - End String[] fieldNames = new String[] {"name"}; Class<?>[] fieldTypes = new Class<?>[] {String.class}; Kafka09AvroTableSource kafkaTableSource = new Kafka09AvroTableSource( kafkaTopic_stage, properties, fieldNames, fieldTypes); //kafkaTableSource.setFailOnMissingField(true); tableEnv.registerTableSource("Orders", kafkaTableSource); //Table result = tableEnv.sql("SELECT STREAM name FROM Orders"); Table result = tableEnv.sql("SELECT name FROM Orders"); Files.deleteIfExists(Paths.get(resultFile)); // create a TableSink TableSink sink = new CsvTableSink(resultFile, "|"); // write the result Table to the TableSink result.writeToSink(sink); env.execute("FlinkConsumer"); } catch (Exception e) { e.printStackTrace(); } }
Example #18
Source File: AdvertisingTopologyNative.java From streaming-benchmarks with Apache License 2.0 | 4 votes |
public static void main(final String[] args) throws Exception { ParameterTool parameterTool = ParameterTool.fromArgs(args); Map conf = Utils.findAndReadConfigFile(parameterTool.getRequired("confPath"), true); int kafkaPartitions = ((Number)conf.get("kafka.partitions")).intValue(); int hosts = ((Number)conf.get("process.hosts")).intValue(); int cores = ((Number)conf.get("process.cores")).intValue(); ParameterTool flinkBenchmarkParams = ParameterTool.fromMap(getFlinkConfs(conf)); LOG.info("conf: {}", conf); LOG.info("Parameters used: {}", flinkBenchmarkParams.toMap()); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.getConfig().setGlobalJobParameters(flinkBenchmarkParams); // Set the buffer timeout (default 100) // Lowering the timeout will lead to lower latencies, but will eventually reduce throughput. env.setBufferTimeout(flinkBenchmarkParams.getLong("flink.buffer-timeout", 100)); if(flinkBenchmarkParams.has("flink.checkpoint-interval")) { // enable checkpointing for fault tolerance env.enableCheckpointing(flinkBenchmarkParams.getLong("flink.checkpoint-interval", 1000)); } // set default parallelism for all operators (recommended value: number of available worker CPU cores in the cluster (hosts * cores)) env.setParallelism(hosts * cores); DataStream<String> messageStream = env .addSource(new FlinkKafkaConsumer082<String>( flinkBenchmarkParams.getRequired("topic"), new SimpleStringSchema(), flinkBenchmarkParams.getProperties())).setParallelism(Math.min(hosts * cores, kafkaPartitions)); messageStream .rebalance() // Parse the String as JSON .flatMap(new DeserializeBolt()) //Filter the records if event type is "view" .filter(new EventFilterBolt()) // project the event .<Tuple2<String, String>>project(2, 5) // perform join with redis data .flatMap(new RedisJoinBolt()) // process campaign .keyBy(0) .flatMap(new CampaignProcessor()); env.execute(); }
Example #19
Source File: ReadFromKafka.java From flinkDemo with Apache License 2.0 | 4 votes |
public static void main(String[] args) throws Exception { // create execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Map properties= new HashMap(); properties.put("bootstrap.servers", "192.168.10.63:6667,192.168.10.64:6667,192.168.10.65:6667"); properties.put("group.id", "dec-esc-group-vib-calc"); properties.put("enable.auto.commit", "true"); properties.put("auto.commit.interval.ms", "1000"); properties.put("auto.offset.reset", "earliest"); properties.put("session.timeout.ms", "30000"); properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("topic", "dec-vibration-test"); //KafkaConsumer<String,String> kafkaConsumer = new KafkaConsumer<String, String>(properties); // parse user parameters //ParameterTool parameterTool = ParameterTool.fromArgs(args); ParameterTool parameterTool = ParameterTool.fromMap(properties); FlinkKafkaConsumer010 consumer010 = new FlinkKafkaConsumer010( parameterTool.getRequired("topic"), new SimpleStringSchema(), parameterTool.getProperties()); // consumer010.setStartFromEarliest(); DataStream<String> messageStream = env .addSource(consumer010); // print() will write the contents of the stream to the TaskManager's standard out stream // the rebelance call is causing a repartitioning of the data so that all machines // see the messages (for example in cases when "num kafka partitions" < "num flink operators" messageStream.rebalance().map(new MapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override public String map(String value) throws Exception { return value; } }); messageStream.print(); env.execute(); }
Example #20
Source File: WriteIntoKafka.java From kafka-example with Apache License 2.0 | 4 votes |
public SimpleStringSchema() { }