org.neuroph.util.NeuronProperties Java Examples

The following examples show how to use org.neuroph.util.NeuronProperties. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: MlpNetworkTrainer.java    From developerWorks with Apache License 2.0 6 votes vote down vote up
/**
 * Create the {@link NetworkMetrics} object. It is used to keep track of information about
 * the networks produced by this run.
 * 
 * @param yearsToSimulate
 *          The years for which simulations are to be run against the trained
 *          networks produced by the program to validate them.
 * 
 * @param neuronLayerDescriptor
 *          The network descriptor, each Integer in the array represents
 *          the number of neurons in that layer. The 0th element represents the input layer, the last element
 *          represents the output layer, with hidden layers between them.
 * 
 * @param neuronProperties
 *          The {@link NeuronProperties} Neuroph metadata object. Used when creating
 *          a new network as a convenient way to set a bunch of properties all at once.
 * 
 * @return {@link NetworkMetrics} - the metrics object.
 */
private NetworkMetrics createNetworkMetrics(MultiLayerPerceptron network, Integer[] yearsToSimulate,
    List<Integer> neuronLayerDescriptor, NeuronProperties neuronProperties) {
  String neuronLayerDescriptorString = NetworkUtils.generateLayerStructureString(neuronLayerDescriptor);
  //
  // Create metrics
  log.info("*********** FETCHING NETWORK METRICS **************");
  NetworkMetrics metrics = networkMetricsCache.get(network);
  if (metrics == null) {
    log.info("*********** CREATED NEW NETWORK METRICS FOR THIS NETWORK (" + neuronLayerDescriptorString
        + ") **************");
    metrics = new NetworkMetrics();
    networkMetricsCache.put(network, metrics);
  }
  metrics.setNeuronProperties(neuronProperties);
  metrics.setIterationStartTime(System.currentTimeMillis());
  metrics.setLearnStartTime(System.currentTimeMillis());
  metrics.setLayerStructure(neuronLayerDescriptorString);
  metrics.setNumberOfIterationsSoFar(metrics.getNumberOfIterationsSoFar() + 1);
  metrics.setSimulationYears(yearsToSimulate);
  return metrics;
}
 
Example #2
Source File: ART1Network.java    From NeurophFramework with Apache License 2.0 6 votes vote down vote up
/**
    *
    * @param vigilance
    * @param L
    * @param neuronsInLayers
    */
   public ART1Network (double vigilance, int L, int ... neuronsInLayers) {
	// init neuron settings


	NeuronProperties neuronProperties = new NeuronProperties();
               neuronProperties.setProperty("useBias", true);
	neuronProperties.setProperty("transferFunction",
			TransferFunctionType.SIGMOID);
               neuronProperties.setProperty("inputFunction", WeightedSum.class);

               // Makes a vector, which gives as an array of numbers of neurons in each layer

	List<Integer> neuronsInLayersVector = new ArrayList<>();
	for(int i=0; i<neuronsInLayers.length; i++) {
                   neuronsInLayersVector.add(new Integer(neuronsInLayers[i]));
               }

	this.createNetwork(neuronsInLayersVector, neuronProperties, vigilance, L);
}
 
Example #3
Source File: Hopfield.java    From NeurophFramework with Apache License 2.0 6 votes vote down vote up
/**
 * Creates Hopfield network architecture
 * 
 * @param neuronsCount
 *            neurons number in Hopfied network
 * @param neuronProperties
 *            neuron properties
 */
private void createNetwork(int neuronsCount, NeuronProperties neuronProperties) {

	// set network type
	this.setNetworkType(NeuralNetworkType.HOPFIELD);

	// createLayer neurons in layer
	Layer layer = LayerFactory.createLayer(neuronsCount, neuronProperties);

	// createLayer full connectivity in layer
	ConnectionFactory.fullConnect(layer, 0.1);

	// add layer to network
	this.addLayer(layer);

	// set input and output cells for this network
	NeuralNetworkFactory.setDefaultIO(this);

	// set Hopfield learning rule for this network
	//this.setLearningRule(new HopfieldLearning(this));	
	this.setLearningRule(new BinaryHebbianLearning());			
}
 
Example #4
Source File: MlpNetworkTrainer.java    From developerWorks with Apache License 2.0 6 votes vote down vote up
/**
 * Yet another method to log network info. I probably should combine all these at
 * some point.
 * 
 * @param metrics
 *          The ubiquitous {@link NetworkMetrics} object.
 * @param neuronProperties
 *          The Neuroph neuron properties metadata object
 * @param learningRule
 *          The learning rule in use
 */
private static void logNetworkInfo(NetworkMetrics metrics, NeuronProperties neuronProperties,
    MomentumBackpropagation learningRule) {
  StringBuilder sb;
  String useBias = neuronProperties.getProperty("useBias").toString();
  String learningRate = Double.toString(learningRule.getLearningRate());
  String maxError = Double.toString(learningRule.getMaxError());
  String momentum = Double.toString(learningRule.getMomentum());
  log.info("*** NETWORK INFO ***");

  sb = new StringBuilder();
  sb.append("Network Info:\n");
  sb.append("\tUse Bias            : " + useBias + "\n");
  sb.append("\tLearning Rate       : " + learningRate + "\n");
  sb.append("\tMax Error           : " + maxError + "\n");
  sb.append("\tMomentum            : " + momentum + "\n");
  sb.append("\tLayer Structure     : " + metrics.getLayerStructure() + "\n");
  sb.append("\tTotal Network Error : "
      + BigDecimal.valueOf(learningRule.getTotalNetworkError() * 100.0).setScale(2, RoundingMode.HALF_UP));
  log.info(sb.toString());

}
 
Example #5
Source File: FeatureMapTest.java    From NeurophFramework with Apache License 2.0 6 votes vote down vote up
@Ignore
public void testFeatureMapWithManyNeurons() {
	Dimension2D dimension = new Dimension2D(4, 3);
	FeatureMapLayer featureMap = new FeatureMapLayer(dimension, new NeuronProperties());
	InputNeuron inputNeuron1 = new InputNeuron();
	inputNeuron1.setInput(1);
	InputNeuron inputNeuron2 = new InputNeuron();
	inputNeuron2.setInput(2);
	InputNeuron inputNeuron3 = new InputNeuron();
	inputNeuron3.setInput(3);
	InputNeuron inputNeuron4 = new InputNeuron();
	inputNeuron4.setInput(4);
	featureMap.addNeuron(inputNeuron1);
	featureMap.addNeuron(inputNeuron2);
	featureMap.addNeuron(inputNeuron3);
	featureMap.addNeuron(inputNeuron4);

	Assert.assertEquals(4, featureMap.getNeuronsCount());
}
 
Example #6
Source File: FeatureMapTest.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
@Test
public void testEmptyFeatureMap() {
	Dimension2D dimension = new Dimension2D(0, 0);
	FeatureMapLayer featureMap = new FeatureMapLayer(dimension, new NeuronProperties());
	Assert.assertEquals(0, featureMap.getNeuronsCount());
	Assert.assertEquals(0, featureMap.getHeight());
	Assert.assertEquals(0, featureMap.getWidth());
}
 
Example #7
Source File: MultiLayerPerceptron.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public MultiLayerPerceptron(TransferFunctionType transferFunctionType, int... neuronsInLayers) {
    // init neuron settings
    NeuronProperties neuronProperties = new NeuronProperties();
    neuronProperties.setProperty("useBias", true);
    neuronProperties.setProperty("transferFunction", transferFunctionType);
    neuronProperties.setProperty("inputFunction", WeightedSum.class);


    List<Integer> neuronsInLayersVector = new ArrayList<>();
    for (int i = 0; i < neuronsInLayers.length; i++) {
        neuronsInLayersVector.add(Integer.valueOf(neuronsInLayers[i]));
    }

    this.createNetwork(neuronsInLayersVector, neuronProperties);
}
 
Example #8
Source File: MultiLayerPerceptron.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public MultiLayerPerceptron(List<Integer> neuronsInLayers, TransferFunctionType transferFunctionType) {
    // init neuron settings
    NeuronProperties neuronProperties = new NeuronProperties();
    neuronProperties.setProperty("useBias", true);
    neuronProperties.setProperty("transferFunction", transferFunctionType);

    this.createNetwork(neuronsInLayers, neuronProperties);
}
 
Example #9
Source File: Model.java    From o2oa with GNU Affero General Public License v3.0 5 votes vote down vote up
public NeuralNetwork<MomentumBackpropagation> createNeuralNetwork(Integer inValueCount, Integer outValueCount,
		Integer hiddenLayerCount) {
	NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class);
	NeuronProperties hiddenNeuronProperties = new NeuronProperties(InputOutputNeuron.class, WeightedSum.class,
			Sigmoid.class);
	NeuronProperties outputNeuronProperties = new NeuronProperties(InputOutputNeuron.class, WeightedSum.class,
			Sigmoid.class);
	NeuralNetwork<MomentumBackpropagation> neuralNetwork = new NeuralNetwork<>();
	neuralNetwork.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON);
	Layer inputLayer = LayerFactory.createLayer(inValueCount, inputNeuronProperties);
	inputLayer.addNeuron(new BiasNeuron());
	neuralNetwork.addLayer(inputLayer);
	List<Integer> hiddenNeurons = this.hiddenNeurons(inValueCount, outValueCount, hiddenLayerCount);
	for (Integer count : hiddenNeurons) {
		Layer layer = LayerFactory.createLayer(count, hiddenNeuronProperties);
		layer.addNeuron(new BiasNeuron());
		neuralNetwork.addLayer(layer);
	}
	Layer outputLayer = LayerFactory.createLayer(outValueCount, outputNeuronProperties);
	neuralNetwork.addLayer(outputLayer);
	for (int i = 0; i < (neuralNetwork.getLayersCount() - 1); i++) {
		Layer prevLayer = neuralNetwork.getLayers().get(i);
		Layer nextLayer = neuralNetwork.getLayers().get(i + 1);
		ConnectionFactory.fullConnect(prevLayer, nextLayer);
	}
	neuralNetwork.setLearningRule(this.createMomentumBackpropagation(
			MapTools.getDouble(this.getPropertyMap(), PROPERTY_MLP_MAXERROR, DEFAULT_MLP_MAXERROR),
			MapTools.getInteger(this.getPropertyMap(), PROPERTY_MLP_MAXITERATION, DEFAULT_MLP_MAXITERATION),
			MapTools.getDouble(this.getPropertyMap(), PROPERTY_MLP_LEARNINGRATE, DEFAULT_MLP_LEARNINGRATE),
			MapTools.getDouble(this.getPropertyMap(), PROPERTY_MLP_MOMENTUM, DEFAULT_MLP_MOMENTUM)));
	NeuralNetworkFactory.setDefaultIO(neuralNetwork);
	neuralNetwork.randomizeWeights();
	return neuralNetwork;
}
 
Example #10
Source File: FeatureMapTest.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
@Ignore
public void testFeatureMapWithOneNeuron() {
	Dimension2D dimension = new Dimension2D(4, 3);
	FeatureMapLayer featureMap = new FeatureMapLayer(dimension, new NeuronProperties());
	InputNeuron inputNeuron = new InputNeuron();
	inputNeuron.setInput(1);
	featureMap.addNeuron(inputNeuron);

	Assert.assertEquals(1, featureMap.getNeuronsCount());
	Assert.assertEquals(dimension.getWidth(), featureMap.getWidth());
	Assert.assertEquals(dimension.getHeight(), featureMap.getHeight());
}
 
Example #11
Source File: MultiLayerPerceptron.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public MultiLayerPerceptron(int... neuronsInLayers) {
    // init neuron settings
    NeuronProperties neuronProperties = new NeuronProperties();
    neuronProperties.setProperty("useBias", true);
    neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID);
    neuronProperties.setProperty("inputFunction", WeightedSum.class);

    List<Integer> neuronsInLayersVector = new ArrayList<>();
    for (int i = 0; i < neuronsInLayers.length; i++) {
        neuronsInLayersVector.add(Integer.valueOf(neuronsInLayers[i]));
    }

    this.createNetwork(neuronsInLayersVector, neuronProperties);
}
 
Example #12
Source File: PoolingLayer.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates pooling layer with specified kernel, appropriate map
 * dimensions in regard to previous layer (fromLayer param) and specified
 * number of feature maps with given neuron properties.
 *
 * @param fromLayer    previous layer, which will be connected to this layer
 * @param kernel       kernel for all feature maps
 * @param numberOfMaps number of feature maps to create in this layer
 * @param neuronProp   settings for neurons in feature maps
 */
public PoolingLayer(FeatureMapsLayer fromLayer, Dimension2D kernelDim, int numberOfMaps, NeuronProperties neuronProp) {
    this.kernel = kernel;
    Dimension2D fromDimension = fromLayer.getMapDimensions();

    int mapWidth = fromDimension.getWidth() / kernel.getWidth();
    int mapHeight = fromDimension.getHeight() / kernel.getHeight();
    this.mapDimensions = new Dimension2D(mapWidth, mapHeight);

    createFeatureMaps(numberOfMaps, mapDimensions, kernelDim, neuronProp);
}
 
Example #13
Source File: FeatureMapLayer.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates an empty 2D layer with specified dimensions
 *
 * @param dimensions layer dimensions (width and weight)
 */    
public FeatureMapLayer(Dimension2D dimensions, NeuronProperties neuronProperties) {
    this.dimensions = dimensions;
    
    for (int i = 0; i < dimensions.getHeight() * dimensions.getWidth(); i++) {
        Neuron neuron = NeuronFactory.createNeuron(neuronProperties);
        addNeuron(neuron);
    }        
}
 
Example #14
Source File: FeatureMapLayer.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates 2D layer with specified dimensions, filled with neurons with
 * specified properties
 *
 * @param dimensions       layer dimensions
 * @param neuronProperties neuron properties
 */
public FeatureMapLayer(Dimension2D dimensions, NeuronProperties neuronProperties, Dimension2D kernelDimension) {
    this(dimensions, kernelDimension);

    for (int i = 0; i < dimensions.getHeight() * dimensions.getWidth(); i++) {
        Neuron neuron = NeuronFactory.createNeuron(neuronProperties);
        addNeuron(neuron);
    }
}
 
Example #15
Source File: ConvolutionalLayer.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates convolutional layer with specified kernel, appropriate map
 * dimensions in regard to previous layer (fromLayer param) and specified
 * number of feature maps with default neuron settings for convolutional
 * layer.
 *
 * @param fromLayer previous layer, which will be connected to this layer
 * @param kernel kernel for all feature maps
 * @param numberOfMaps number of feature maps to create in this layer
 * @param transferFunction neuron's transfer function to use
 */
public ConvolutionalLayer(FeatureMapsLayer fromLayer, Dimension2D kernelDimension, int numberOfMaps, Class <? extends TransferFunction> transferFunction) {
    Dimension2D fromDimension = fromLayer.getMapDimensions();

    int mapWidth = fromDimension.getWidth() - kernelDimension.getWidth() + 1;
    int mapHeight = fromDimension.getHeight() - kernelDimension.getHeight() + 1;
    this.mapDimensions = new Dimension2D(mapWidth, mapHeight);
    
    NeuronProperties neuronProp = new NeuronProperties(Neuron.class, transferFunction);

    createFeatureMaps(numberOfMaps, this.mapDimensions, kernelDimension, neuronProp);
}
 
Example #16
Source File: InputLayer.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates a new instance of InputLayer with specified number of input neurons
 * @param neuronsCount input neurons count for this layer
 */
public InputLayer(int neuronsCount) {
    NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class);

    for (int i = 0; i < neuronsCount; i++) {
        Neuron neuron = NeuronFactory.createNeuron(inputNeuronProperties);
        this.addNeuron(neuron);
    }
}
 
Example #17
Source File: Layer.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates an instance of Layer with the specified number of neurons with
 * specified neuron properties
 *
 * @param neuronsCount number of neurons in layer
 * @param neuronProperties properties of neurons in layer
 */
public Layer(int neuronsCount, NeuronProperties neuronProperties) {
    this(neuronsCount);

    for (int i = 0; i < neuronsCount; i++) {
        Neuron neuron = NeuronFactory.createNeuron(neuronProperties);
        this.addNeuron(neuron);
    }
}
 
Example #18
Source File: ART1Network.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/** Creates new ART1 Network, with specified number of neurons in layers
  *   and a vigilance parameter
  *
  *  @param neuronsInLayers
  *            collection of neuron number in layers
   * @param vigilance
   * @param L
  *
  */

  public ART1Network (List<Integer> neuronsInLayers, double vigilance, int L ) {

NeuronProperties neuronProperties = new NeuronProperties();
              neuronProperties.setProperty("useBias", true);
neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID);
              neuronProperties.setProperty("inputFunction", new WeightedSum());

this.createNetwork(neuronsInLayers, neuronProperties, vigilance, L);
  }
 
Example #19
Source File: MultiLayerPerceptron.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates new MultiLayerPerceptron with specified number of neurons in layers
 *
 * @param neuronsInLayers collection of neuron number in layers
 */
public MultiLayerPerceptron(List<Integer> neuronsInLayers) {
    // init neuron settings
    NeuronProperties neuronProperties = new NeuronProperties();
    neuronProperties.setProperty("useBias", true);
    neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID);

    this.createNetwork(neuronsInLayers, neuronProperties);
}
 
Example #20
Source File: Adaline.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
	 * Creates adaline network architecture with specified number of input neurons
	 *
	 * @param inputNeuronsCount
         *              number of neurons in input layer
	 */
	private void createNetwork(int inputNeuronsCount) {
		// set network type code
		this.setNetworkType(NeuralNetworkType.ADALINE);

                // create input layer neuron settings for this network
		NeuronProperties inNeuronProperties = new NeuronProperties();
		inNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR);

		// createLayer input layer with specified number of neurons
		//Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, inNeuronProperties);
                Layer inputLayer = new InputLayer(inputNeuronsCount);
                inputLayer.addNeuron(new BiasNeuron()); // add bias neuron (always 1, and it will act as bias input for output neuron)
		this.addLayer(inputLayer);

               // create output layer neuron settings for this network
		NeuronProperties outNeuronProperties = new NeuronProperties();
		outNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); // was RAMP
//		outNeuronProperties.setProperty("transferFunction.slope", new Double(1));
//		outNeuronProperties.setProperty("transferFunction.yHigh", new Double(1));
//		outNeuronProperties.setProperty("transferFunction.xHigh", new Double(1));
//		outNeuronProperties.setProperty("transferFunction.yLow", new Double(-1));
//		outNeuronProperties.setProperty("transferFunction.xLow", new Double(-1));

		// createLayer output layer (only one neuron)
		Layer outputLayer = LayerFactory.createLayer(1, outNeuronProperties);
		this.addLayer(outputLayer);

		// createLayer full conectivity between input and output layer
		ConnectionFactory.fullConnect(inputLayer, outputLayer);

		// set input and output cells for network
		NeuralNetworkFactory.setDefaultIO(this);

		// set LMS learning rule for this network
		this.setLearningRule(new LMS());
	}
 
Example #21
Source File: CompetitiveNetwork.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates Competitive network architecture
 * 
 * @param inputNeuronsCount
 *            input neurons number
        * @param outputNeuronsCount
        *            output neurons number
 * @param neuronProperties
 *            neuron properties
 */
private void createNetwork(int inputNeuronsCount, int outputNeuronsCount) {
	// set network type
	this.setNetworkType(NeuralNetworkType.COMPETITIVE);

	// createLayer input layer
	Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, new NeuronProperties());
	this.addLayer(inputLayer);

	// createLayer properties for neurons in output layer
	NeuronProperties neuronProperties = new NeuronProperties();
	neuronProperties.setProperty("neuronType", CompetitiveNeuron.class);
	neuronProperties.setProperty("inputFunction",	WeightedSum.class);
	neuronProperties.setProperty("transferFunction",TransferFunctionType.RAMP);

	// createLayer full connectivity in competitive layer
	CompetitiveLayer competitiveLayer = new CompetitiveLayer(outputNeuronsCount, neuronProperties);

	// add competitive layer to network
	this.addLayer(competitiveLayer);

	double competitiveWeight = -(1 / (double) outputNeuronsCount);
	// createLayer full connectivity within competitive layer
	ConnectionFactory.fullConnect(competitiveLayer, competitiveWeight, 1);

	// createLayer full connectivity from input to competitive layer
	ConnectionFactory.fullConnect(inputLayer, competitiveLayer);

	// set input and output cells for this network
	NeuralNetworkFactory.setDefaultIO(this);

	this.setLearningRule(new CompetitiveLearning());
}
 
Example #22
Source File: UnsupervisedHebbianNetwork.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
	 * Creates an instance of Unsuervised Hebian net with specified number
	 * of neurons in input layer and output layer, and transfer function
	 * 
	 * @param inputNeuronsNum
	 *            number of neurons in input layer
	 * @param outputNeuronsNum
	 *            number of neurons in output layer
	 * @param transferFunctionType
	 *            transfer function type
	 */
	private void createNetwork(int inputNeuronsNum, int outputNeuronsNum,
		TransferFunctionType transferFunctionType) {

		// init neuron properties
		NeuronProperties neuronProperties = new NeuronProperties();
//		neuronProperties.setProperty("bias", new Double(-Math
//				.abs(Math.random() - 0.5))); // Hebbian network cann not work
		// without bias
		neuronProperties.setProperty("transferFunction", transferFunctionType);
		neuronProperties.setProperty("transferFunction.slope", new Double(1));

		// set network type code
		this.setNetworkType(NeuralNetworkType.UNSUPERVISED_HEBBIAN_NET);

		// createLayer input layer
		Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum,
			neuronProperties);
		this.addLayer(inputLayer);

		// createLayer output layer
		Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum,
			neuronProperties);
		this.addLayer(outputLayer);

		// createLayer full conectivity between input and output layer
		ConnectionFactory.fullConnect(inputLayer, outputLayer);

		// set input and output cells for this network
		NeuralNetworkFactory.setDefaultIO(this);

		// set appropriate learning rule for this network
		this.setLearningRule(new UnsupervisedHebbianLearning());
	//this.setLearningRule(new OjaLearning(this));
	}
 
Example #23
Source File: Perceptron.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
	 * Creates perceptron architecture with specified number of neurons in input
	 * and output layer, specified transfer function
	 * 
	 * @param inputNeuronsCount
	 *            number of neurons in input layer
	 * @param outputNeuronsCount
	 *            number of neurons in output layer
	 * @param transferFunctionType
	 *            neuron transfer function type
	 */
	private void createNetwork(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType) {
		// set network type
		this.setNetworkType(NeuralNetworkType.PERCEPTRON);

                Layer inputLayer = new InputLayer(inputNeuronsCount);
		this.addLayer(inputLayer);

		NeuronProperties outputNeuronProperties = new NeuronProperties();
		outputNeuronProperties.setProperty("neuronType", ThresholdNeuron.class);
		outputNeuronProperties.setProperty("thresh", new Double(Math.abs(Math.random())));
		outputNeuronProperties.setProperty("transferFunction", transferFunctionType);
		// for sigmoid and tanh transfer functions set slope propery
		outputNeuronProperties.setProperty("transferFunction.slope", new Double(1));

		// createLayer output layer
		Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, outputNeuronProperties);
		this.addLayer(outputLayer);

		// create full conectivity between input and output layer
		ConnectionFactory.fullConnect(inputLayer, outputLayer);

		// set input and output cells for this network
		NeuralNetworkFactory.setDefaultIO(this);
                
                this.setLearningRule(new BinaryDeltaRule());
		// set appropriate learning rule for this network
//		if (transferFunctionType == TransferFunctionType.STEP) {
//			this.setLearningRule(new BinaryDeltaRule(this));
//		} else if (transferFunctionType == TransferFunctionType.SIGMOID) {
//			this.setLearningRule(new SigmoidDeltaRule(this));
//		} else if (transferFunctionType == TransferFunctionType.TANH) {
//			this.setLearningRule(new SigmoidDeltaRule(this));
//		} else {
//			this.setLearningRule(new PerceptronLearning(this));
//		}
	}
 
Example #24
Source File: BAM.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates an instance of BAM network with specified number of neurons
        * in input and output layers.
 * 
 * @param inputNeuronsCount
 *            number of neurons in input layer
 * @param outputNeuronsCount
 *            number of neurons in output layer
 */
public BAM(int inputNeuronsCount, int outputNeuronsCount) {

	// init neuron settings for BAM network
	NeuronProperties neuronProperties = new NeuronProperties();
	neuronProperties.setProperty("neuronType", InputOutputNeuron.class);
	neuronProperties.setProperty("bias", new Double(0));
	neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
	neuronProperties.setProperty("transferFunction.yHigh", new Double(1));
	neuronProperties.setProperty("transferFunction.yLow", new Double(0));

	this.createNetwork(inputNeuronsCount, outputNeuronsCount, neuronProperties);
}
 
Example #25
Source File: BAM.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates BAM network architecture
 * 
 * @param inputNeuronsCount
 *            number of neurons in input layer
 * @param outputNeuronsCount
 *            number of neurons in output layer
 * @param neuronProperties
 *            neuron properties
 */
private void createNetwork(int inputNeuronsCount, int outputNeuronsCount,  NeuronProperties neuronProperties) {

               // set network type
	this.setNetworkType(NeuralNetworkType.BAM);

	// create input layer
	Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties);
	// add input layer to network
	this.addLayer(inputLayer);

	// create output layer
	Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, neuronProperties);	
	// add output layer to network
	this.addLayer(outputLayer);
	
	// create full connectivity from in to out layer	
	ConnectionFactory.fullConnect(inputLayer, outputLayer);		
	// create full connectivity from out to in layer
	ConnectionFactory.fullConnect(outputLayer, inputLayer);
			
	// set input and output cells for this network
	NeuralNetworkFactory.setDefaultIO(this);

	// set Hebbian learning rule for this network
	this.setLearningRule(new BinaryHebbianLearning());			
}
 
Example #26
Source File: SupervisedHebbianNetwork.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 *Creates an instance of Supervised Hebbian Network with specified number
 * of neurons in input layer, output layer and transfer function
 * 
 * @param inputNeuronsNum
 *            number of neurons in input layer
 * @param outputNeuronsNum
 *            number of neurons in output layer
 * @param transferFunctionType
 *            transfer function type
 */
private void createNetwork(int inputNeuronsNum, int outputNeuronsNum,
	TransferFunctionType transferFunctionType) {

	// init neuron properties
	NeuronProperties neuronProperties = new NeuronProperties();
	neuronProperties.setProperty("transferFunction", transferFunctionType);
	neuronProperties.setProperty("transferFunction.slope", new Double(1));
	neuronProperties.setProperty("transferFunction.yHigh", new Double(1));
	neuronProperties.setProperty("transferFunction.xHigh", new Double(1));		
	neuronProperties.setProperty("transferFunction.yLow", new Double(-1));
	neuronProperties.setProperty("transferFunction.xLow", new Double(-1));
	
	// set network type code
	this.setNetworkType(NeuralNetworkType.SUPERVISED_HEBBIAN_NET);

	// createLayer input layer
	Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum,
		neuronProperties);
	this.addLayer(inputLayer);

	// createLayer output layer
	Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum,
		neuronProperties);
	this.addLayer(outputLayer);

	// createLayer full conectivity between input and output layer
	ConnectionFactory.fullConnect(inputLayer, outputLayer);

	// set input and output cells for this network
	NeuralNetworkFactory.setDefaultIO(this);

	// set appropriate learning rule for this network
	this.setLearningRule(new SupervisedHebbianLearning());
}
 
Example #27
Source File: Outstar.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates Outstar architecture with specified number of neurons in 
 * output layer
 * 
 * @param outputNeuronsCount
 *            number of neurons in output layer
 */
private void createNetwork(int outputNeuronsCount ) {

	// set network type
	this.setNetworkType(NeuralNetworkType.OUTSTAR);

	// init neuron settings for this type of network
	NeuronProperties neuronProperties = new NeuronProperties();
	neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
	
	// create input layer
	Layer inputLayer = LayerFactory.createLayer(1, neuronProperties);
	this.addLayer(inputLayer);

	// createLayer output layer
	neuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP);
	Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, neuronProperties);
	this.addLayer(outputLayer);

	// create full conectivity between input and output layer
	ConnectionFactory.fullConnect(inputLayer, outputLayer);

	// set input and output cells for this network
	NeuralNetworkFactory.setDefaultIO(this);

	// set outstar learning rule for this network
	this.setLearningRule(new OutstarLearning());
}
 
Example #28
Source File: RectifierNeuralNetwork.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public RectifierNeuralNetwork(List<Integer> neuronsInLayers) {
	//this.setNetworkType(NeuralNetworkType.RECTIFIER);

	NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class);
       Layer layer = LayerFactory.createLayer(neuronsInLayers.get(0), inputNeuronProperties);

       this.addLayer(layer);

       // create layers
       Layer prevLayer = layer;

       for (int layerIdx = 1; layerIdx < neuronsInLayers.size()-1; layerIdx++) {
           Integer neuronsNum = neuronsInLayers.get(layerIdx);
           layer = LayerFactory.createLayer(neuronsNum, RectifiedLinear.class);

           this.addLayer(layer);
           ConnectionFactory.fullConnect(prevLayer, layer);

           prevLayer = layer;
       }

       int numberOfOutputNeurons = neuronsInLayers.get(neuronsInLayers.size() - 1);
       Layer outputLayer = LayerFactory.createLayer(numberOfOutputNeurons, Sigmoid.class);
       this.addLayer(outputLayer);
       ConnectionFactory.fullConnect(prevLayer, outputLayer);

       NeuralNetworkFactory.setDefaultIO(this); // set input and output cells for network
       this.setLearningRule(new MomentumBackpropagation());
       this.randomizeWeights(new HeZhangRenSunUniformWeightsRandomizer());
}
 
Example #29
Source File: Instar.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates Instar architecture with specified number of input neurons
 * 
 * @param inputNeuronsCount
 *            number of neurons in input layer
 */
private void createNetwork(int inputNeuronsCount ) {

	// set network type
	this.setNetworkType(NeuralNetworkType.INSTAR);

	// init neuron settings for this type of network
	NeuronProperties neuronProperties = new NeuronProperties();
	neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
	
	// create input layer
	Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties);
	this.addLayer(inputLayer);

	// createLayer output layer
	neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
	Layer outputLayer = LayerFactory.createLayer(1,	neuronProperties);
	this.addLayer(outputLayer);

	// create full conectivity between input and output layer
	ConnectionFactory.fullConnect(inputLayer, outputLayer);

	// set input and output cells for this network
	NeuralNetworkFactory.setDefaultIO(this);

	// set appropriate learning rule for this network
	this.setLearningRule(new InstarLearning());
}
 
Example #30
Source File: Hopfield.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * Creates new Hopfield network with specified neuron number
 * 
 * @param neuronsCount
 *            neurons number in Hopfied network
 */
public Hopfield(int neuronsCount) {

	// init neuron settings for hopfield network
	NeuronProperties neuronProperties = new NeuronProperties();
	neuronProperties.setProperty("neuronType", InputOutputNeuron.class);
	neuronProperties.setProperty("bias", new Double(0));
	neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
	neuronProperties.setProperty("transferFunction.yHigh", new Double(1));
	neuronProperties.setProperty("transferFunction.yLow", new Double(0));

	this.createNetwork(neuronsCount, neuronProperties);
}