org.apache.commons.math3.optim.univariate.BrentOptimizer Java Examples

The following examples show how to use org.apache.commons.math3.optim.univariate.BrentOptimizer. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: PosteriorSummaryUtils.java    From gatk-protected with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
/**
 * Given a list of posterior samples, returns an estimate of the posterior mode (using
 * mllib kernel density estimation in {@link KernelDensity} and {@link BrentOptimizer}).
 * Note that estimate may be poor if number of samples is small (resulting in poor kernel density estimation),
 * or if posterior is not unimodal (or is sufficiently pathological otherwise). If the samples contain
 * {@link Double#NaN}, {@link Double#NaN} will be returned.
 * @param samples   posterior samples, cannot be {@code null} and number of samples must be greater than 0
 * @param ctx       {@link JavaSparkContext} used by {@link KernelDensity} for mllib kernel density estimation
 */
public static double calculatePosteriorMode(final List<Double> samples, final JavaSparkContext ctx) {
    Utils.nonNull(samples);
    Utils.validateArg(samples.size() > 0, "Number of samples must be greater than zero.");

    //calculate sample min, max, mean, and standard deviation
    final double sampleMin = Collections.min(samples);
    final double sampleMax = Collections.max(samples);
    final double sampleMean = new Mean().evaluate(Doubles.toArray(samples));
    final double sampleStandardDeviation = new StandardDeviation().evaluate(Doubles.toArray(samples));

    //if samples are all the same or contain NaN, can simply return mean
    if (sampleStandardDeviation == 0. || Double.isNaN(sampleMean)) {
        return sampleMean;
    }

    //use Silverman's rule to set bandwidth for kernel density estimation from sample standard deviation
    //see https://en.wikipedia.org/wiki/Kernel_density_estimation#Practical_estimation_of_the_bandwidth
    final double bandwidth =
            SILVERMANS_RULE_CONSTANT * sampleStandardDeviation * Math.pow(samples.size(), SILVERMANS_RULE_EXPONENT);

    //use kernel density estimation to approximate posterior from samples
    final KernelDensity pdf = new KernelDensity().setSample(ctx.parallelize(samples, 1)).setBandwidth(bandwidth);

    //use Brent optimization to find mode (i.e., maximum) of kernel-density-estimated posterior
    final BrentOptimizer optimizer =
            new BrentOptimizer(RELATIVE_TOLERANCE, RELATIVE_TOLERANCE * (sampleMax - sampleMin));
    final UnivariateObjectiveFunction objective =
            new UnivariateObjectiveFunction(f -> pdf.estimate(new double[] {f})[0]);
    //search for mode within sample range, start near sample mean
    final SearchInterval searchInterval = new SearchInterval(sampleMin, sampleMax, sampleMean);
    return optimizer.optimize(objective, GoalType.MAXIMIZE, searchInterval, BRENT_MAX_EVAL).getPoint();
}
 
Example #2
Source File: CNLOHCaller.java    From gatk-protected with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
private double optimizeIt(final Function<Double, Double> objectiveFxn, final SearchInterval searchInterval) {
    final MaxEval BRENT_MAX_EVAL = new MaxEval(1000);
    final double RELATIVE_TOLERANCE = 0.001;
    final double ABSOLUTE_TOLERANCE = 0.001;
    final BrentOptimizer OPTIMIZER = new BrentOptimizer(RELATIVE_TOLERANCE, ABSOLUTE_TOLERANCE);

    final UnivariateObjectiveFunction objective = new UnivariateObjectiveFunction(x -> objectiveFxn.apply(x));
    return OPTIMIZER.optimize(objective, GoalType.MAXIMIZE, searchInterval, BRENT_MAX_EVAL).getPoint();
}
 
Example #3
Source File: PosteriorSummaryUtils.java    From gatk with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
/**
 * Given a list of posterior samples, returns an estimate of the posterior mode (using
 * mllib kernel density estimation in {@link KernelDensity} and {@link BrentOptimizer}).
 * Note that estimate may be poor if number of samples is small (resulting in poor kernel density estimation),
 * or if posterior is not unimodal (or is sufficiently pathological otherwise). If the samples contain
 * {@link Double#NaN}, {@link Double#NaN} will be returned.
 * @param samples   posterior samples, cannot be {@code null} and number of samples must be greater than 0
 * @param ctx       {@link JavaSparkContext} used by {@link KernelDensity} for mllib kernel density estimation
 */
public static double calculatePosteriorMode(final List<Double> samples, final JavaSparkContext ctx) {
    Utils.nonNull(samples);
    Utils.validateArg(samples.size() > 0, "Number of samples must be greater than zero.");

    //calculate sample min, max, mean, and standard deviation
    final double sampleMin = Collections.min(samples);
    final double sampleMax = Collections.max(samples);
    final double sampleMean = new Mean().evaluate(Doubles.toArray(samples));
    final double sampleStandardDeviation = new StandardDeviation().evaluate(Doubles.toArray(samples));

    //if samples are all the same or contain NaN, can simply return mean
    if (sampleStandardDeviation == 0. || Double.isNaN(sampleMean)) {
        return sampleMean;
    }

    //use Silverman's rule to set bandwidth for kernel density estimation from sample standard deviation
    //see https://en.wikipedia.org/wiki/Kernel_density_estimation#Practical_estimation_of_the_bandwidth
    final double bandwidth =
            SILVERMANS_RULE_CONSTANT * sampleStandardDeviation * Math.pow(samples.size(), SILVERMANS_RULE_EXPONENT);

    //use kernel density estimation to approximate posterior from samples
    final KernelDensity pdf = new KernelDensity().setSample(ctx.parallelize(samples, 1)).setBandwidth(bandwidth);

    //use Brent optimization to find mode (i.e., maximum) of kernel-density-estimated posterior
    final BrentOptimizer optimizer =
            new BrentOptimizer(RELATIVE_TOLERANCE, RELATIVE_TOLERANCE * (sampleMax - sampleMin));
    final UnivariateObjectiveFunction objective =
            new UnivariateObjectiveFunction(f -> pdf.estimate(new double[] {f})[0]);
    //search for mode within sample range, start near sample mean
    final SearchInterval searchInterval = new SearchInterval(sampleMin, sampleMax, sampleMean);
    return optimizer.optimize(objective, GoalType.MAXIMIZE, searchInterval, BRENT_MAX_EVAL).getPoint();
}
 
Example #4
Source File: OptimizationUtils.java    From gatk-protected with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
public static double argmax(final Function<Double, Double> function, final double min, final double max, final double guess,
                            final double relativeTolerance, final double absoluteTolerance, final int maxEvaluations) {
    final BrentOptimizer optimizer = new BrentOptimizer(relativeTolerance, absoluteTolerance);
    final SearchInterval interval = new SearchInterval(min, max, guess);
    return optimizer.optimize(new UnivariateObjectiveFunction(function::apply), GoalType.MAXIMIZE, interval, new MaxEval(maxEvaluations)).getPoint();
}
 
Example #5
Source File: LineSearch.java    From astor with GNU General Public License v2.0 3 votes vote down vote up
/**
 * The {@code BrentOptimizer} default stopping criterion uses the
 * tolerances to check the domain (point) values, not the function
 * values.
 * The {@code relativeTolerance} and {@code absoluteTolerance}
 * arguments are thus passed to a {@link SimpleUnivariateValueChecker
 * custom checker} that will use the function values.
 *
 * @param optimizer Optimizer on behalf of which the line search
 * be performed.
 * Its {@link MultivariateOptimizer#computeObjectiveValue(double[])
 * computeObjectiveValue} method will be called by the
 * {@link #search(double[],double[]) search} method.
 * @param relativeTolerance Search will stop when the function relative
 * difference between successive iterations is below this value.
 * @param absoluteTolerance Search will stop when the function absolute
 * difference between successive iterations is below this value.
 * @param initialBracketingRange Extent of the initial interval used to
 * find an interval that brackets the optimum.
 * If the optimized function varies a lot in the vicinity of the optimum,
 * it may be necessary to provide a value lower than the distance between
 * successive local minima.
 */
public LineSearch(MultivariateOptimizer optimizer,
                  double relativeTolerance,
                  double absoluteTolerance,
                  double initialBracketingRange) {
    mainOptimizer = optimizer;
    lineOptimizer = new BrentOptimizer(REL_TOL_UNUSED,
                                       ABS_TOL_UNUSED,
                                       new SimpleUnivariateValueChecker(relativeTolerance,
                                                                        absoluteTolerance));
    this.initialBracketingRange = initialBracketingRange;
}
 
Example #6
Source File: LineSearch.java    From astor with GNU General Public License v2.0 3 votes vote down vote up
/**
 * The {@code BrentOptimizer} default stopping criterion uses the
 * tolerances to check the domain (point) values, not the function
 * values.
 * The {@code relativeTolerance} and {@code absoluteTolerance}
 * arguments are thus passed to a {@link SimpleUnivariateValueChecker
 * custom checker} that will use the function values.
 *
 * @param optimizer Optimizer on behalf of which the line search
 * be performed.
 * Its {@link MultivariateOptimizer#computeObjectiveValue(double[])
 * computeObjectiveValue} method will be called by the
 * {@link #search(double[],double[]) search} method.
 * @param relativeTolerance Search will stop when the function relative
 * difference between successive iterations is below this value.
 * @param absoluteTolerance Search will stop when the function absolute
 * difference between successive iterations is below this value.
 * @param initialBracketingRange Extent of the initial interval used to
 * find an interval that brackets the optimum.
 * If the optimized function varies a lot in the vicinity of the optimum,
 * it may be necessary to provide a value lower than the distance between
 * successive local minima.
 */
public LineSearch(MultivariateOptimizer optimizer,
                  double relativeTolerance,
                  double absoluteTolerance,
                  double initialBracketingRange) {
    mainOptimizer = optimizer;
    lineOptimizer = new BrentOptimizer(REL_TOL_UNUSED,
                                       ABS_TOL_UNUSED,
                                       new SimpleUnivariateValueChecker(relativeTolerance,
                                                                        absoluteTolerance));
    this.initialBracketingRange = initialBracketingRange;
}
 
Example #7
Source File: Solver.java    From dataflow-java with Apache License 2.0 3 votes vote down vote up
/**
 * Maximizes a univariate function using a grid search followed by Brent's algorithm.
 *
 * @param fn the likelihood function to minimize
 * @param gridStart the lower bound for the grid search
 * @param gridEnd the upper bound for the grid search
 * @param gridStep step size for the grid search
 * @param relErr relative error tolerance for Brent's algorithm
 * @param absErr absolute error tolerance for Brent's algorithm
 * @param maxIter maximum # of iterations to perform in Brent's algorithm
 * @param maxEval maximum # of Likelihood function evaluations in Brent's algorithm
 *
 * @return the value of the parameter that maximizes the function
 */
public static double maximize(UnivariateFunction fn, double gridStart, double gridEnd,
    double gridStep, double relErr, double absErr, int maxIter, int maxEval) {
  Interval interval = gridSearch(fn, gridStart, gridEnd, gridStep);
  BrentOptimizer bo = new BrentOptimizer(relErr, absErr);
  UnivariatePointValuePair max = bo.optimize(
      new MaxIter(maxIter),
      new MaxEval(maxEval),
      new SearchInterval(interval.getInf(), interval.getSup()),
      new UnivariateObjectiveFunction(fn),
      GoalType.MAXIMIZE);
  return max.getPoint();
}