org.neuroph.core.data.DataSet Java Examples
The following examples show how to use
org.neuroph.core.data.DataSet.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: Ionosphere.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); evaluation.addEvaluator(new ClassifierEvaluator.Binary(0.5)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.Binary.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #2
Source File: SunSpots.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void run() { // uncomment the following line to use regular Neuroph (non-flat) processing //Neuroph.getInstance().setFlattenNetworks(false); // create neural network NeuralNetwork network = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, WINDOW_SIZE, 10, 1); // normalize training data normalizeSunspots(0.1, 0.9); network.getLearningRule().addListener(this); // create training set DataSet trainingSet = generateTrainingData(); network.learn(trainingSet); predict(network); Neuroph.getInstance().shutdown(); }
Example #3
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Evaluates classification performance of a neural network. * Contains calculation of Confusion matrix for classification tasks or Mean Ssquared Error and Mean Absolute Error for regression tasks. * * @param neuralNet * @param dataSet */ public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); String[] classLabels = new String[]{"Virginica", "Setosa", "Versicolor"}; evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classLabels)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.MultiClass.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #4
Source File: Banknote.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); evaluation.addEvaluator(new ClassifierEvaluator.Binary(0.5)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.Binary.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #5
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); MeanSquaredError mse = new MeanSquaredError(); MeanAbsoluteError mae = new MeanAbsoluteError(); for (DataSetRow testSetRow : dataSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); double[] desiredOutput = testSetRow.getDesiredOutput(); mse.addPatternError(networkOutput, desiredOutput); mae.addPatternError(networkOutput, desiredOutput); } System.out.println("Mean squared error is: " + mse.getTotalError()); System.out.println("Mean absolute error is: " + mae.getTotalError()); }
Example #6
Source File: KohonenLearning.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Override public void learn(DataSet trainingSet) { for (int phase = 0; phase < 2; phase++) { for (int k = 0; k < iterations[phase]; k++) { Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { DataSetRow trainingSetRow = iterator.next(); learnPattern(trainingSetRow, nR[phase]); } // while currentIteration = k; fireLearningEvent(new LearningEvent(this, LearningEvent.Type.EPOCH_ENDED)); if (isStopped()) return; } // for k learningRate = learningRate * 0.5; } // for phase }
Example #7
Source File: DigitsRecognition.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Prints network output for the each element from the specified training * set. * * @param neuralNet neural network * @param testSet test data set */ public static void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("--------------------------------------------------------------------"); System.out.println("***********************TESTING NEURAL NETWORK***********************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); int outputIdx = maxOutput(neuralNet.getOutput()); String[] inputDigit = DigitData.convertDataIntoImage(testSetRow.getInput()); for (int i = 0; i < inputDigit.length; i++) { if (i != inputDigit.length - 1) { System.out.println(inputDigit[i]); } else { System.out.println(inputDigit[i] + "----> " + outputIdx); } } System.out.println(""); } }
Example #8
Source File: WheatSeeds.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); String[] classLabels = new String[]{"1", "2", "3"}; evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classLabels)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.MultiClass.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #9
Source File: StockTrainingSetImport.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Creates and returns training set for stock market prediction using the provided data from array * @param values an array containing stock data * @param inputsCount training element (neural net) inputs count * @param outputsCount training element (neural net) ouputs count * @return training set with stock data */ public static DataSet importFromArray(double[] values, int inputsCount, int outputsCount) { DataSet trainingSet = new DataSet(inputsCount, outputsCount); for (int i = 0; i < values.length - inputsCount; i++) { ArrayList<Double> inputs = new ArrayList<Double>(); for (int j = i; j < i + inputsCount; j++) { inputs.add(values[j]); } ArrayList<Double> outputs = new ArrayList<Double>(); if (outputsCount > 0 && i + inputsCount + outputsCount <= values.length) { for (int j = i + inputsCount; j < i + inputsCount + outputsCount; j++) { outputs.add(values[j]); } if (outputsCount > 0) { trainingSet.add(new DataSetRow(inputs, outputs)); } else { trainingSet.add(new DataSetRow(inputs)); } } } return trainingSet; }
Example #10
Source File: SwedishAutoInsurance.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); MeanSquaredError mse = new MeanSquaredError(); MeanAbsoluteError mae = new MeanAbsoluteError(); for (DataSetRow testSetRow : dataSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); double[] desiredOutput = testSetRow.getDesiredOutput(); mse.addPatternError(networkOutput, desiredOutput); mae.addPatternError(networkOutput, desiredOutput); } System.out.println("Mean squared error is: " + mse.getTotalError()); System.out.println("Mean absolute error is: " + mae.getTotalError()); }
Example #11
Source File: Sonar.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); evaluation.addEvaluator(new ClassifierEvaluator.Binary(0.5)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.Binary.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #12
Source File: TestTimeSeries.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void train() { // get the path to file with data String inputFileName = "C:\\timeseries\\BSW15"; // create MultiLayerPerceptron neural network neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, 5, 10, 1); MomentumBackpropagation learningRule = (MomentumBackpropagation)neuralNet.getLearningRule(); learningRule.setLearningRate(0.2); learningRule.setMomentum(0.5); // learningRule.addObserver(this); learningRule.addListener(this); // create training set from file trainingSet = DataSet.createFromFile(inputFileName, 5, 1, "\t", false); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Done training."); }
Example #13
Source File: MlpNetworkTrainer.java From developerWorks with Apache License 2.0 | 6 votes |
/** * Train the specified MLP network using the specified training data, store metrics in the * specified metrics object. * * @param trainingData * The data used to train the network. * @param network * The MLP network to be trained. * @param metrics * The {@link NetworkMetrics} object where metrics info is stored. */ private void trainNetwork(DataSet trainingData, MultiLayerPerceptron network) { // // Shuffle the training data. Adds an element of randomness to the data. trainingData.shuffle(); // // Now learn, you! network.learn(trainingData); // // Learning complete. Set metrics. NetworkMetrics metrics = networkMetricsCache.get(network); metrics.setIterationLearnTime(System.currentTimeMillis() - metrics.getLearnStartTime()); metrics.setTotalLearnTime(metrics.getTotalLearnTime() + metrics.getIterationLearnTime()); metrics.setNumberOfAsymmetricWinsThisIteration(0); metrics.setNumberOfSymmetricWinsThisIteration(0); metrics.setNumberOfGamesThisIteration(0); }
Example #14
Source File: PerceptronSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Runs this sample */ public static void main(String args[]) { // create training set (logical AND function) DataSet trainingSet = new DataSet(2, 1); trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{1})); // create perceptron neural network NeuralNetwork myPerceptron = new Perceptron(2, 1); // learn the training set myPerceptron.learn(trainingSet); // test perceptron System.out.println("Testing trained perceptron"); testNeuralNetwork(myPerceptron, trainingSet); // save trained perceptron myPerceptron.save("mySamplePerceptron.nnet"); // load saved neural network NeuralNetwork loadedPerceptron = NeuralNetwork.load("mySamplePerceptron.nnet"); // test loaded neural network System.out.println("Testing loaded perceptron"); testNeuralNetwork(loadedPerceptron, trainingSet); }
Example #15
Source File: ZeroMeanNormalizerTest.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Ignore public void testTwoRowsWithOneElementNormalization() { double[] inputRow1 = new double[] { 2 }; double[] inputRow2 = new double[] { 4 }; DataSetRow row1 = createDataRow(inputRow1); DataSetRow row2 = createDataRow(inputRow2); DataSet dataSet = createDataSetFromRows(row1, row2); normalizer.normalize(dataSet); DataSetStatistics stats = new DataSetStatistics(dataSet); double[] columnMeans = stats.inputsMean(); for (int i = 0; i < dataSet.getInputSize(); i++) { double currentColumnMean = columnMeans[i]; assertEquals(0.0, currentColumnMean, 0.01); } }
Example #16
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) { try { //create jml dataset Dataset jmlDataset = FileHandler.loadDataset(new File("datasets/iris.data"), 4, ","); // normalize dataset NormalizeMidrange nmr=new NormalizeMidrange(0,1); nmr.build(jmlDataset); nmr.filter(jmlDataset); //print data as read from file System.out.println(jmlDataset); //convert jml dataset to neuroph DataSet neurophDataset = JMLDataSetConverter.convertJMLToNeurophDataset(jmlDataset, 4, 3); //convert neuroph dataset to jml Dataset jml = JMLDataSetConverter.convertNeurophToJMLDataset(neurophDataset); //print out both to compare them System.out.println("Java-ML data set read from file"); printDataset(jmlDataset); System.out.println("Neuroph data set converted from Java-ML data set"); printDataset(neurophDataset); System.out.println("Java-ML data set reconverted from Neuroph data set"); printDataset(jml); System.out.println("JMLNeuroph classifier test"); //test NeurophJMLClassifier testJMLNeurophClassifier(jmlDataset); } catch (Exception ex) { Logger.getLogger(JMLNeurophSample.class.getName()).log(Level.SEVERE, null, ex); } }
Example #17
Source File: ForestFiresSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.print("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println(" Output: " + Arrays.toString(networkOutput)); } }
Example #18
Source File: StatisticsTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testMinOneRowOneColumn() { double value = 3; DataSet dataSet = createDataSetWithOneRowAndOneColumn(value); DataSetStatistics stats = new DataSetStatistics(dataSet); double[] maxByColumns = stats.inputsMin(); assertEquals(value, maxByColumns[0], LARGEST_MIN_MAX_ERROR); }
Example #19
Source File: IterativeLearning.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public final void learn(DataSet trainingSet) { setTrainingSet(trainingSet); // set this field here su subclasses can access it onStart(); while (!isStopped()) { beforeEpoch(); doLearningEpoch(trainingSet); this.currentIteration++; afterEpoch(); // now check if stop condition is satisfied if (hasReachedStopCondition()) { stopLearning(); } else if (!iterationsLimited && (currentIteration == Integer.MAX_VALUE)) { // if counter has reached max value and iteration number is not limited restart iteration counter this.currentIteration = 1; } // notify listeners that epoch has ended fireLearningEvent(new LearningEvent(this, LearningEvent.Type.EPOCH_ENDED)); // Thread safe pause when learning is paused if (this.pausedLearning) { synchronized (this) { while (this.pausedLearning) { try { this.wait(); } catch (Exception e) { } } } } } onStop(); fireLearningEvent(new LearningEvent(this, LearningEvent.Type.LEARNING_STOPPED)); }
Example #20
Source File: UnsupervisedLearning.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * This method does one learning epoch for the unsupervised learning rules. * It iterates through the training set and trains network weights for each * element * * @param trainingSet * training set for training network */ @Override public void doLearningEpoch(DataSet trainingSet) { Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { DataSetRow trainingSetRow = iterator.next(); learnPattern(trainingSetRow); } }
Example #21
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Before public void setUp() { instance = new BackPropagation(); xorDataSet = new DataSet(2, 1); xorDataSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); xorDataSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); xorDataSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); xorDataSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); maxError = 0.01; instance.setLearningRate(0.5); instance.setMaxError(maxError); String inputFileName = "src/test/resources/iris_normalized.txt"; irisDataSet = DataSet.createFromFile(inputFileName, 4, 3, ",", false); }
Example #22
Source File: PerceptronLearningTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Before public void setUp() { instance = new PerceptronLearning(); dataSet = new DataSet(2, 1); dataSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); dataSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); dataSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); dataSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); maxError = 0.4; instance.setMaxError(maxError); }
Example #23
Source File: BinaryDeltaRuleTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Before public void setUp() { instance = new BinaryDeltaRule(); dataSet = new DataSet(2, 1); dataSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); dataSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); dataSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); dataSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); maxError = 0.4; instance.setMaxError(maxError); }
Example #24
Source File: BrestCancerSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("**************************************************"); System.out.println("**********************RESULT**********************"); System.out.println("**************************************************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); //Finding network output double[] networkOutput = neuralNet.getOutput(); int predicted = maxOutput(networkOutput); //Finding actual output double[] networkDesiredOutput = testSetRow.getDesiredOutput(); int ideal = maxOutput(networkDesiredOutput); //Colecting data for network evaluation keepScore(predicted, ideal); } System.out.println("Total cases: " + this.count[2] + ". "); System.out.println("Correctly predicted cases: " + this.correct[2] + ". "); System.out.println("Incorrectly predicted cases: " + (this.count[2] - this.correct[2] - unpredicted) + ". "); System.out.println("Unrecognized cases: " + unpredicted + ". "); double percentTotal = (double) this.correct[2] * 100 / (double) this.count[2]; System.out.println("Predicted correctly: " + formatDecimalNumber(percentTotal) + "%. "); double percentM = (double) this.correct[0] * 100.0 / (double) this.count[0]; System.out.println("Prediction for 'M (malignant)' => (Correct/total): " + this.correct[0] + "/" + count[0] + "(" + formatDecimalNumber(percentM) + "%). "); double percentB = (double) this.correct[1] * 100.0 / (double) this.count[1]; System.out.println("Prediction for 'B (benign)' => (Correct/total): " + this.correct[1] + "/" + count[1] + "(" + formatDecimalNumber(percentB) + "%). "); }
Example #25
Source File: PimaIndiansDiabetes.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("Showing inputs, desired output and neural network output for every row in test set."); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.println("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println("Output: " + Arrays.toString(networkOutput)); System.out.println("Desired output" + Arrays.toString(testSetRow.getDesiredOutput())); } }
Example #26
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Prints Neuroph data set * * @param neurophDataset Dataset Neuroph data set */ public static void printDataset(DataSet neurophDataset) { System.out.println("Neuroph dataset"); Iterator iterator = neurophDataset.iterator(); while (iterator.hasNext()) { DataSetRow row = (DataSetRow) iterator.next(); System.out.println("inputs"); System.out.println(Arrays.toString(row.getInput())); if (row.getDesiredOutput().length > 0) { System.out.println("outputs"); System.out.println(Arrays.toString(row.getDesiredOutput())); } } }
Example #27
Source File: Abalone.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("Showing inputs, desired output and neural network output for every row in test set."); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.println("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println("Output: " + Arrays.toString(networkOutput)); System.out.println("Desired output" + Arrays.toString(testSetRow.getDesiredOutput())); } }
Example #28
Source File: IonosphereSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("**************************************************"); System.out.println("**********************RESULT**********************"); System.out.println("**************************************************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); //Finding network output double[] networkOutput = neuralNet.getOutput(); int predicted = maxOutput(networkOutput); //Finding actual output double[] networkDesiredOutput = testSetRow.getDesiredOutput(); int ideal = maxOutput(networkDesiredOutput); //Colecting data for network evaluation keepScore(predicted, ideal); } System.out.println("Total cases: " + this.count[2] + ". "); System.out.println("Correctly predicted cases: " + this.correct[2] + ". "); System.out.println("Incorrectly predicted cases: " + (this.count[2] - this.correct[2] - unpredicted) + ". "); System.out.println("Unrecognized cases: " + unpredicted + ". "); double percentTotal = (double) this.correct[2] * 100 / (double) this.count[2]; System.out.println("Predicted correctly: " + formatDecimalNumber(percentTotal) + "%. "); double percentM = (double) this.correct[0] * 100.0 / (double) this.count[0]; System.out.println("Prediction for 'Good' => (Correct/total): " + this.correct[0] + "/" + count[0] + "(" + formatDecimalNumber(percentM) + "%). "); double percentB = (double) this.correct[1] * 100.0 / (double) this.count[1]; System.out.println("Prediction for 'Bad' => (Correct/total): " + this.correct[1] + "/" + count[1] + "(" + formatDecimalNumber(percentB) + "%). "); this.count = new int[3]; this.correct = new int[3]; unpredicted = 0; }
Example #29
Source File: ZeroMeanNormalizer.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void normalize(DataSet dataSet) { for (DataSetRow row : dataSet.getRows()) { double[] normalizedInput = row.getInput(); for (int i = 0; i < dataSet.getInputSize(); i++) { normalizedInput[i] = (normalizedInput[i] - meanInput[i]) / stdInput[i]; } row.setInput(normalizedInput); } }
Example #30
Source File: RunExampleEvaluation.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { NeuralNetwork nnet = NeuralNetwork.createFromFile("irisNet.nnet"); DataSet dataSet = DataSet.createFromFile("data_sets/iris_data_normalised.txt", 4, 3, ","); Evaluation.runFullEvaluation(nnet, dataSet); }