com.badlogic.gdx.utils.BinaryHeap Java Examples
The following examples show how to use
com.badlogic.gdx.utils.BinaryHeap.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: AiDefaultTurnProcessor.java From dice-heroes with GNU General Public License v3.0 | 5 votes |
public static Grid2D.Coordinate selectMoveTarget(Creature creature, Array<Grid2D.Coordinate> coordinates, CellValueCalculator calculator) { BinaryHeap<Node> heap = new BinaryHeap<Node>(9, true); for (Grid2D.Coordinate c : coordinates) { float value = calculator.getValue(creature, c.x(), c.y()); heap.add(new Node(c.x(), c.y(), value)); } if (heap.size == 0) return new Grid2D.Coordinate(creature.getX(), creature.getY()); Node node = heap.peek(); return new Grid2D.Coordinate(node.x, node.y); }
Example #2
Source File: AiDefaultTurnProcessor.java From dice-heroes with GNU General Public License v3.0 | 5 votes |
public static <T> T selectBest(Array<T> elements, Function<T, Float> calc) { BinaryHeap<TypedNode<T>> heap = new BinaryHeap<TypedNode<T>>(9, true); for (T t : elements) { float value = calc.apply(t); heap.add(new TypedNode<T>(t, value)); } if (heap.size == 0) return elements.first(); return heap.peek().t; }
Example #3
Source File: IndexedAStarPathFinder.java From gdx-ai with Apache License 2.0 | 5 votes |
@SuppressWarnings("unchecked") public IndexedAStarPathFinder (IndexedGraph<N> graph, boolean calculateMetrics) { this.graph = graph; this.nodeRecords = (NodeRecord<N>[])new NodeRecord[graph.getNodeCount()]; this.openList = new BinaryHeap<NodeRecord<N>>(); if (calculateMetrics) this.metrics = new Metrics(); }
Example #4
Source File: AStarPathFinder.java From bladecoder-adventure-engine with Apache License 2.0 | 4 votes |
@Override public boolean findPath (Object mover, N startNode, N targetNode, NavPath<N> out) { this.mover = mover; distance = 0; if (isBlocked(targetNode, targetNode)) return false; checkedID++; if (checkedID < 0) checkedID = 1; BinaryHeap<AStarAlgoData> openList = this.openList; AStarHeuristicCalculator<N> heuristicCalculator = this.heuristicCalculator; int maxSearchDistance = this.maxSearchDistance; openList.clear(); addToOpenList(getAlgoData(startNode)); getAlgoData(targetNode); AStarAlgoData currentData = null; int maxDepth = 0; while (maxDepth < maxSearchDistance && openList.size != 0) { AStarAlgoData lastData = currentData; currentData = openList.pop(); currentData.open = false; distance = currentData.depth; currentData.closed = true; if (currentData.node == targetNode && lastData != null && !isBlocked(lastData.node, targetNode)) break; float currentCost = currentData.cost; for (N neighborNode : currentData.node.neighbors) { AStarAlgoData neighborData = getAlgoData(neighborNode); if (!isBlocked(currentData.node, neighborNode)) { sourceNodeInContext = startNode; float nextStepCost = currentCost + graph.getCost(this, neighborNode); if (nextStepCost < neighborData.cost) { if (neighborData.open) { openList.remove(neighborData); neighborData.open = false; } neighborData.closed = false; } if (!neighborData.open && !neighborData.closed) { neighborData.cost = nextStepCost; neighborData.heuristic = heuristicCalculator.getCost(this, mover, neighborNode, targetNode); neighborData.depth = currentData.depth + 1; neighborNode.parent = currentData.node; maxDepth = Math.max(maxDepth, neighborData.depth); addToOpenList(neighborData); } } } } boolean pathFound = targetNode.parent != null; if (pathFound) out.fill(startNode, targetNode); return pathFound; }