org.deeplearning4j.nn.layers.objdetect.YoloUtils Java Examples
The following examples show how to use
org.deeplearning4j.nn.layers.objdetect.YoloUtils.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: TransformRotatingImages.java From Java-Machine-Learning-for-Computer-Vision with MIT License | 6 votes |
private static void cropImageWithYOLOBoundingBox(ComputationGraph yolo, Speed selectedSpeed, File file) throws Exception { if (file.isDirectory()) { return; } BufferedImage bufferedImage = ImageIO.read(file); INDArray features = LOADER.asMatrix(bufferedImage); opencv_core.Mat mat = LOADER.asMat(features); PRE_PROCESSOR.transform(features); INDArray results = yolo.outputSingle(features); Yolo2OutputLayer outputLayer = (Yolo2OutputLayer) yolo.getOutputLayer(0); List<DetectedObject> predictedObjects = outputLayer.getPredictedObjects(results, 0.5); YoloUtils.nms(predictedObjects, 0.5); Optional<DetectedObject> max = predictedObjects.stream() .max((o1, o2) -> ((Double) o1.getConfidence()).compareTo(o2.getConfidence())); createCroppedImage(mat, selectedSpeed, max.get(), file); }
Example #2
Source File: YOLOOutputAdapter.java From konduit-serving with Apache License 2.0 | 5 votes |
private DetectedObjectsBatch[] getPredictedObjects(INDArray[] outputs, double threshold, String[] outputNames, int originalHeight, int originalWidth) { // assuming "standard" output from TensorFlow using a "normal" YOLOv2 model //INDArray permuted = outputs[0].permute(0, 3, 1, 2); INDArray permuted = outputs[0]; INDArray activated = YoloUtils.activate(boundingBoxPriors, permuted); List<DetectedObject> predictedObjects1 = YoloUtils.getPredictedObjects(boundingBoxPriors, activated, threshold, 0.4); DetectedObjectsBatch[] detectedObjects = new DetectedObjectsBatch[predictedObjects1.size()]; int n = numLabels; // an arbitrary number of classes returned per object for (int i = 0; i < detectedObjects.length; i++) { DetectedObject detectedObject = predictedObjects1.get(i); long x = Math.round(originalWidth * predictedObjects1.get(i).getCenterX() / gridWidth); long y = Math.round(originalHeight * predictedObjects1.get(i).getCenterY() / gridHeight); long w = Math.round(originalWidth * predictedObjects1.get(i).getWidth() / gridWidth); long h = Math.round(originalHeight * predictedObjects1.get(i).getHeight() / gridHeight); detectedObjects[i] = new DetectedObjectsBatch(); detectedObjects[i].setCenterX(x); detectedObjects[i].setCenterY(y); detectedObjects[i].setWidth(w); detectedObjects[i].setHeight(h); detectedObjects[i].setPredictedClasses(new String[]{labels.getLabel(detectedObject.getPredictedClass())}); detectedObjects[i].setPredictedClassNumbers(new int[]{detectedObject.getPredictedClass()}); detectedObjects[i].setConfidences(new float[]{detectedObject.getClassPredictions().getFloat(detectedObject.getPredictedClass())}); } return detectedObjects; }
Example #3
Source File: Yolo.java From Java-Machine-Learning-for-Computer-Vision with MIT License | 5 votes |
public void predictBoundingBoxes(String windowName) throws Exception { long start = System.currentTimeMillis(); Yolo2OutputLayer outputLayer = (Yolo2OutputLayer) modelsMap.get(windowName).getOutputLayer(0); Mat matFrame = stackMap.get(windowName).pop(); INDArray indArray = prepareImage(matFrame); log.info("stack of frames size " + stackMap.get(windowName).size()); if (indArray == null) { return; } INDArray results = modelsMap.get(windowName).outputSingle(indArray); if (results == null) { return; } List<DetectedObject> predictedObjects = outputLayer.getPredictedObjects(results, YOLO_DETECTION_THRESHOLD); YoloUtils.nms(predictedObjects, 0.5); List<MarkedObject> markedObjects = predictedObjects.stream() .filter(e -> groupMap.get(map.get(e.getPredictedClass())) != null) .map(e -> { try { return new MarkedObject(e, trainCifar10Model.getEmbeddings(matFrame, e, selectedSpeed), System.currentTimeMillis(), matFrame); } catch (Exception e1) { e1.printStackTrace(); } return null; }).collect(Collectors.toCollection(() -> new ConcurrentArrayList<>())); if (outputFrames) { for (MarkedObject markedObject : markedObjects) { ImageUtils.cropImageWithYolo(selectedSpeed, markedObject.getMatFrame(), markedObject.getDetectedObject(), outputFrames); } } this.predictedObjects = markedObjects; log.info("stack of predictions size " + this.predictedObjects.size()); log.info("Prediction time " + (System.currentTimeMillis() - start) / 1000d); }
Example #4
Source File: Yolo.java From Java-Machine-Learning-for-Computer-Vision with MIT License | 5 votes |
@Nullable private MarkedObject findExistingCarMatch(MarkedObject obj) { MarkedObject minDistanceMarkedObject = null; for (MarkedObject predictedObject : previousPredictedObjects) { double distance = predictedObject.getL2Norm().distance2(obj.getL2Norm()); if (strategy == Strategy.IoU_PLUS_ENCODINGS) { if (YoloUtils.iou(obj.getDetectedObject(), predictedObject.getDetectedObject()) >= 0.5 && distance <= trackingThreshold) { minDistanceMarkedObject = predictedObject; obj.setId(minDistanceMarkedObject.getId()); break; } } else if (strategy == Strategy.ONLY_ENCODINGS) { if (distance <= trackingThreshold) { minDistanceMarkedObject = predictedObject; obj.setId(minDistanceMarkedObject.getId()); break; } } else if (strategy == Strategy.ONLY_IoU) { if (YoloUtils.iou(obj.getDetectedObject(), predictedObject.getDetectedObject()) >= 0.4) { minDistanceMarkedObject = predictedObject; obj.setId(minDistanceMarkedObject.getId()); break; } } } return minDistanceMarkedObject; }
Example #5
Source File: Yolo.java From Java-Machine-Learning-for-Computer-Vision with MIT License | 5 votes |
public void drawBoundingBoxesRectangles(Frame frame, Mat matFrame) { if (invalidData(frame, matFrame)) return; ArrayList<DetectedObject> detectedObjects = new ArrayList<>(predictedObjects); YoloUtils.nms(detectedObjects, 0.5); for (DetectedObject detectedObject : detectedObjects) { createBoundingBoxRectangle(matFrame, frame.imageWidth, frame.imageHeight, detectedObject); } }
Example #6
Source File: YOLO2_TF_Client.java From SKIL_Examples with Apache License 2.0 | 4 votes |
private void renderJavaFXStyle(GraphicsContext ctx) throws Exception { INDArray boundingBoxPriors = Nd4j.create(YOLO2.DEFAULT_PRIOR_BOXES); ctx.setLineWidth(3); ctx.setTextAlign(TextAlignment.LEFT); long start = System.nanoTime(); for (int i = 0; i < 1; i++) { INDArray permuted = networkGlobalOutput.permute(0, 3, 1, 2); INDArray activated = YoloUtils.activate(boundingBoxPriors, permuted); List<DetectedObject> predictedObjects = YoloUtils.getPredictedObjects(boundingBoxPriors, activated, 0.6, 0.4); //System.out.println( "width: " + imageWidth ); //System.out.println( "height: " + imageHeight ); for (DetectedObject o : predictedObjects) { ClassPrediction classPrediction = labels.decodePredictions(o.getClassPredictions(), 1).get(0).get(0); String label = classPrediction.getLabel(); long x = Math.round(imageWidth * o.getCenterX() / gridWidth); long y = Math.round(imageHeight * o.getCenterY() / gridHeight); long w = Math.round(imageWidth * o.getWidth() / gridWidth); long h = Math.round(imageHeight * o.getHeight() / gridHeight); System.out.println("\"" + label + "\" at [" + x + "," + y + ";" + w + "," + h + "], score = " + o.getConfidence() * classPrediction.getProbability()); double[] xy1 = o.getTopLeftXY(); double[] xy2 = o.getBottomRightXY(); int x1 = (int) Math.round(imageWidth * xy1[0] / gridWidth); int y1 = (int) Math.round(imageHeight * xy1[1] / gridHeight); int x2 = (int) Math.round(imageWidth * xy2[0] / gridWidth); int y2 = (int) Math.round(imageHeight * xy2[1] / gridHeight); int rectW = x2 - x1; int rectH = y2 - y1; //System.out.printf("%s - %d, %d, %d, %d \n", label, x1, x2, y1, y2); //System.out.println( "color: " + colors.get(label) ); ctx.setStroke(colors.get(label)); ctx.strokeRect(x1, y1, rectW, rectH); int labelWidth = label.length() * 10; int labelHeight = 14; ctx.setFill( colors.get(label) ); ctx.strokeRect(x1, y1-labelHeight, labelWidth, labelHeight); ctx.fillRect(x1, y1 - labelHeight, labelWidth, labelHeight); ctx.setFill( Color.WHITE ); ctx.fillText(label, x1 + 3, y1 - 3 ); } } globalEndTime = System.nanoTime(); long end = System.nanoTime(); System.out.println("Rendering code took: " + (end - start) / 1000000 + " ms"); System.out.println("Overall Program Time: " + (globalEndTime - globalStartTime) / 1000000 + " ms"); }