org.nd4j.linalg.api.memory.enums.AllocationPolicy Java Examples
The following examples show how to use
org.nd4j.linalg.api.memory.enums.AllocationPolicy.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: IntDataBufferTests.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testReallocationWorkspace() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID"); DataBuffer buffer = Nd4j.createBuffer(new int[] {1, 2, 3, 4}); val old = buffer.asInt(); assertTrue(buffer.isAttached()); assertEquals(4, buffer.capacity()); buffer.reallocate(6); assertEquals(6, buffer.capacity()); val newContent = buffer.asInt(); assertEquals(6, newContent.length); assertArrayEquals(old, Arrays.copyOf(newContent, old.length)); workspace.close(); }
Example #2
Source File: InterleavedDataSetCallback.java From deeplearning4j with Apache License 2.0 | 6 votes |
protected void initializeWorkspaces(long size) { WorkspaceConfiguration configuration = WorkspaceConfiguration.builder().initialSize(size) .overallocationLimit(bufferSize).policyReset(ResetPolicy.ENDOFBUFFER_REACHED) .policyAllocation(AllocationPolicy.OVERALLOCATE).policySpill(SpillPolicy.EXTERNAL) .policyLearning(LearningPolicy.NONE).build(); int numDevices = Nd4j.getAffinityManager().getNumberOfDevices(); int cDevice = Nd4j.getAffinityManager().getDeviceForCurrentThread(); for (int i = 0; i < numDevices; i++) { Nd4j.getAffinityManager().unsafeSetDevice(i); workspaces.add(Nd4j.getWorkspaceManager().createNewWorkspace(configuration, "IDSC-" + i, i)); } Nd4j.getAffinityManager().unsafeSetDevice(cDevice); numWorkspaces = numDevices; isInitialized = true; }
Example #3
Source File: MixedDataTypesTests.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testWorkspaceBool(){ val conf = WorkspaceConfiguration.builder().minSize(10 * 1024 * 1024) .overallocationLimit(1.0).policyAllocation(AllocationPolicy.OVERALLOCATE) .policyLearning(LearningPolicy.FIRST_LOOP).policyMirroring(MirroringPolicy.FULL) .policySpill(SpillPolicy.EXTERNAL).build(); val ws = Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(conf, "WS"); for( int i=0; i<10; i++ ) { try (val workspace = (Nd4jWorkspace)ws.notifyScopeEntered() ) { val bool = Nd4j.create(DataType.BOOL, 1, 10); val dbl = Nd4j.create(DataType.DOUBLE, 1, 10); val boolAttached = bool.isAttached(); val doubleAttached = dbl.isAttached(); // System.out.println(i + "\tboolAttached=" + boolAttached + ", doubleAttached=" + doubleAttached ); //System.out.println("bool: " + bool); //java.lang.IllegalStateException: Indexer must never be null //System.out.println("double: " + dbl); } } }
Example #4
Source File: CyclicWorkspaceTests.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testBasicMechanics_1() { val fShape = new long[]{128, 784}; val lShape = new long[] {128, 10}; val prefetchSize = 24; val configuration = WorkspaceConfiguration.builder().minSize(10 * 1024L * 1024L) .overallocationLimit(prefetchSize + 1).policyReset(ResetPolicy.ENDOFBUFFER_REACHED) .policyLearning(LearningPolicy.FIRST_LOOP).policyAllocation(AllocationPolicy.OVERALLOCATE) .policySpill(SpillPolicy.REALLOCATE).build(); for (int e = 0; e < 100; e++) { try (val ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "randomNameHere" + 119)) { val fArray = Nd4j.create(fShape).assign(e); val lArray = Nd4j.create(lShape).assign(e); // log.info("Current offset: {}; Current size: {};", ws.getCurrentOffset(), ws.getCurrentSize()); } } }
Example #5
Source File: FloatDataBufferTest.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testReallocationWorkspace() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID"); DataBuffer buffer = Nd4j.createBuffer(new float[] {1, 2, 3, 4}); assertTrue(buffer.isAttached()); float[] old = buffer.asFloat(); assertEquals(4, buffer.capacity()); buffer.reallocate(6); assertEquals(6, buffer.capacity()); float[] newBuf = buffer.asFloat(); assertArrayEquals(old, newBuf, 1e-4F); workspace.close(); }
Example #6
Source File: DoubleDataBufferTest.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testReallocationWorkspace() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID"); DataBuffer buffer = Nd4j.createBuffer(new double[] {1, 2, 3, 4}); double[] old = buffer.asDouble(); assertTrue(buffer.isAttached()); assertEquals(4, buffer.capacity()); buffer.reallocate(6); assertEquals(6, buffer.capacity()); assertArrayEquals(old, Arrays.copyOf(buffer.asDouble(), 4), 1e-1); workspace.close(); }
Example #7
Source File: AccountingTests.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testWorkspaceAccounting_1() { val deviceId = Nd4j.getAffinityManager().getDeviceForCurrentThread(); val wsConf = WorkspaceConfiguration.builder() .initialSize(10 * 1024 * 1024) .policyAllocation(AllocationPolicy.STRICT) .policyLearning(LearningPolicy.FIRST_LOOP) .build(); val before = Nd4j.getMemoryManager().allocatedMemory(deviceId); val workspace = Nd4j.getWorkspaceManager().createNewWorkspace(wsConf, "random_name_here"); val middle = Nd4j.getMemoryManager().allocatedMemory(deviceId); workspace.destroyWorkspace(true); val after = Nd4j.getMemoryManager().allocatedMemory(deviceId); log.info("Before: {}; Middle: {}; After: {}", before, middle, after); assertTrue(middle > before); assertTrue(after < middle); }
Example #8
Source File: CudaWorkspaceTest.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testCircularWorkspaceAsymmetry_3() { // circular workspace mode val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024) .policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT) .policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build(); val root = Nd4j.create(DataType.FLOAT, 1000000).assign(119); for (int e = 0; e < 100; e++) { try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) { val array = Nd4j.create(DataType.FLOAT, root.shape()); array.assign(root); val second = Nd4j.create(DataType.FLOAT, root.shape()); array.data().getInt(3); } } }
Example #9
Source File: CudaWorkspaceTest.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testCircularWorkspaceAsymmetry_2() { // circular workspace mode val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024) .policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT) .policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build(); val root = Nd4j.create(DataType.FLOAT, 1000000).assign(119); for (int e = 0; e < 100; e++) { try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) { val array = Nd4j.create(DataType.FLOAT, root.shape()); array.assign(root); array.data().getInt(3); assertEquals(ws.getHostOffset(), ws.getDeviceOffset()); } } }
Example #10
Source File: FloatDataBufferTest.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testReallocationWorkspace() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID"); DataBuffer buffer = Nd4j.createBuffer(new float[] {1, 2, 3, 4}); assertTrue(buffer.isAttached()); float[] old = buffer.asFloat(); assertEquals(4, buffer.capacity()); buffer.reallocate(6); assertEquals(6, buffer.capacity()); float[] newBuf = buffer.asFloat(); assertArrayEquals(old, newBuf, 1e-4F); workspace.close(); }
Example #11
Source File: DoubleDataBufferTest.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testReallocationWorkspace() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID"); DataBuffer buffer = Nd4j.createBuffer(new double[] {1, 2, 3, 4}); double[] old = buffer.asDouble(); assertTrue(buffer.isAttached()); assertEquals(4, buffer.capacity()); buffer.reallocate(6); assertEquals(6, buffer.capacity()); assertArrayEquals(old, buffer.asDouble(), 1e-1); workspace.close(); }
Example #12
Source File: CudaWorkspaceTest.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testCircularWorkspaceAsymmetry_1() { // circular workspace mode val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024) .policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT) .policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build(); try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) { val array = Nd4j.create(DataType.FLOAT, 10, 10); assertEquals(0, ws.getHostOffset()); assertNotEquals(0, ws.getDeviceOffset()); // we expect that this array has no data/buffer on HOST side assertEquals(AffinityManager.Location.DEVICE, Nd4j.getAffinityManager().getActiveLocation(array)); // since this array doesn't have HOST buffer - it will allocate one now array.getDouble(3L); assertEquals(ws.getHostOffset(), ws.getDeviceOffset()); } try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) { assertEquals(ws.getHostOffset(), ws.getDeviceOffset()); } Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread(); }
Example #13
Source File: SpecialWorkspaceTests.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testViewDetach_1() throws Exception { WorkspaceConfiguration configuration = WorkspaceConfiguration.builder().initialSize(10000000).overallocationLimit(3.0) .policyAllocation(AllocationPolicy.OVERALLOCATE).policySpill(SpillPolicy.REALLOCATE) .policyLearning(LearningPolicy.FIRST_LOOP).policyReset(ResetPolicy.BLOCK_LEFT).build(); Nd4jWorkspace workspace = (Nd4jWorkspace) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(configuration, "WS109"); INDArray row = Nd4j.linspace(1, 10, 10); INDArray exp = Nd4j.create(1, 10).assign(2.0); INDArray result = null; try (MemoryWorkspace ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "WS109")) { INDArray matrix = Nd4j.create(10, 10); for (int e = 0; e < matrix.rows(); e++) matrix.getRow(e).assign(row); INDArray column = matrix.getColumn(1); assertTrue(column.isView()); assertTrue(column.isAttached()); result = column.detach(); } assertFalse(result.isView()); assertFalse(result.isAttached()); assertEquals(exp, result); }
Example #14
Source File: AccountingTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testWorkspaceAccounting_2() { val deviceId = Nd4j.getAffinityManager().getDeviceForCurrentThread(); val wsConf = WorkspaceConfiguration.builder() .initialSize(0) .policyAllocation(AllocationPolicy.STRICT) .policyLearning(LearningPolicy.OVER_TIME) .cyclesBeforeInitialization(3) .build(); val before = Nd4j.getMemoryManager().allocatedMemory(deviceId); long middle1 = 0; try (val workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(wsConf, "random_name_here")) { val array = Nd4j.create(DataType.DOUBLE, 5, 5); middle1 = Nd4j.getMemoryManager().allocatedMemory(deviceId); } val middle2 = Nd4j.getMemoryManager().allocatedMemory(deviceId); Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread(); val after = Nd4j.getMemoryManager().allocatedMemory(deviceId); log.info("Before: {}; Middle1: {}; Middle2: {}; After: {}", before, middle1, middle2, after); assertTrue(middle1 > before); assertTrue(after < middle1); }
Example #15
Source File: IntDataBufferTests.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testReallocationWorkspace() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID"); DataBuffer buffer = Nd4j.createBuffer(new int[] {1, 2, 3, 4}); int[] old = buffer.asInt(); assertTrue(buffer.isAttached()); assertEquals(4, buffer.capacity()); buffer.reallocate(6); assertEquals(6, buffer.capacity()); assertArrayEquals(old, buffer.asInt()); workspace.close(); }
Example #16
Source File: SpecialTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testYoloStyle(){ WorkspaceConfiguration WS_ALL_LAYERS_ACT_CONFIG = WorkspaceConfiguration.builder() .initialSize(0) .overallocationLimit(0.05) .policyLearning(LearningPolicy.FIRST_LOOP) .policyReset(ResetPolicy.BLOCK_LEFT) .policySpill(SpillPolicy.REALLOCATE) .policyAllocation(AllocationPolicy.OVERALLOCATE) .build(); for( int i=0; i<10; i++ ){ try(val ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(WS_ALL_LAYERS_ACT_CONFIG, "ws")){ // System.out.println("STARTING: " + i); INDArray objectPresentMask = Nd4j.create(DataType.BOOL, 1,4,4); long[] shape = {1,3,2,4,4}; INDArray noIntMask1 = Nd4j.createUninitialized(DataType.BOOL, shape, 'c'); INDArray noIntMask2 = Nd4j.createUninitialized(DataType.BOOL, shape, 'c'); noIntMask1 = Transforms.or(noIntMask1.get(all(), all(), point(0), all(), all()), noIntMask1.get(all(), all(), point(1), all(), all()) ); //Shape: [mb, b, H, W]. Values 1 if no intersection noIntMask2 = Transforms.or(noIntMask2.get(all(), all(), point(0), all(), all()), noIntMask2.get(all(), all(), point(1), all(), all()) ); INDArray noIntMask = Transforms.or(noIntMask1, noIntMask2 ); Nd4j.getExecutioner().commit(); INDArray intMask = Transforms.not(noIntMask); //Values 0 if no intersection Nd4j.getExecutioner().commit(); Broadcast.mul(intMask, objectPresentMask, intMask, 0, 2, 3); Nd4j.getExecutioner().commit(); // System.out.println("DONE: " + i); } } }
Example #17
Source File: MultiLayerNetwork.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected static WorkspaceConfiguration getLayerWorkingMemWSConfig(int numWorkingMemCycles){ return WorkspaceConfiguration.builder() .initialSize(0) .overallocationLimit(0.02) .policyLearning(LearningPolicy.OVER_TIME) .cyclesBeforeInitialization(numWorkingMemCycles) .policyReset(ResetPolicy.BLOCK_LEFT) .policySpill(SpillPolicy.REALLOCATE) .policyAllocation(AllocationPolicy.OVERALLOCATE) .build(); }
Example #18
Source File: MultiLayerNetwork.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected static WorkspaceConfiguration getLayerActivationWSConfig(int numLayers){ //Activations memory: opened once per layer - for every second layer (preprocessors are within the loop). //Technically we could set learning to numLayers / 2, but will set to numLayers for simplicity, and also to // account for a backward pass return WorkspaceConfiguration.builder() .initialSize(0) .overallocationLimit(0.02) .policyLearning(LearningPolicy.OVER_TIME) .cyclesBeforeInitialization(numLayers) .policyReset(ResetPolicy.BLOCK_LEFT) .policySpill(SpillPolicy.REALLOCATE) .policyAllocation(AllocationPolicy.OVERALLOCATE) .build(); }
Example #19
Source File: MtcnnService.java From mtcnn-java with Apache License 2.0 | 5 votes |
/** * Detect faces and related points. * @param image3HW input image with dimensions [C x H x W] (e.g. channels first) * @return Two INDArray elements representing the Total Boxes found and the related points. * @throws IOException */ public INDArray[] rawFaceDetection(INDArray image3HW) throws IOException { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder() .initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT) .policyLearning(LearningPolicy.NONE) .build(); try (MemoryWorkspace ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(initialConfig, "SOME_ID")) { Assert.isTrue(image3HW.rank() == 3, "The input image is expected to have [0, Channels, Width, Height] dimensions"); Assert.isTrue(image3HW.shape()[0] == 3, "The input image is expected to have channel count at dimension 0"); // Compute the scale pyramid int height = (int) image3HW.size(1); int width = (int) image3HW.size(2); List<Double> scales = MtcnnUtil.computeScalePyramid(height, width, this.minFaceSize, this.scaleFactor); // Stage One Object[] stageOneResult = this.preparationStage(image3HW, scales); // Reorder image dimensions from [3,H,W] to [H,W,3] image3HW = image3HW.permute(1, 2, 0); // Stage Two INDArray totalBoxes = this.refinementStage(image3HW, (INDArray) stageOneResult[0], (MtcnnUtil.PadResult) stageOneResult[1]); // Stage Three INDArray[] stageThreeResult = this.outputStage(image3HW, totalBoxes); return stageThreeResult; } }
Example #20
Source File: DataBufferTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test @Ignore("AB 2019/06/03 - CI issue: \"CUDA stream synchronization failed\" - see issue 7657") public void testNoArgCreateBufferFromArray() { //Tests here: //1. Create from JVM array //2. Create from JVM array with offset -> does this even make sense? //3. Create detached buffer WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().createNewWorkspace(initialConfig, "WorkspaceId"); for (boolean useWs : new boolean[]{false, true}) { try (MemoryWorkspace ws = (useWs ? workspace.notifyScopeEntered() : null)) { //Float DataBuffer f = Nd4j.createBuffer(new float[]{1, 2, 3}); checkTypes(DataType.FLOAT, f, 3); assertEquals(useWs, f.isAttached()); testDBOps(f); f = Nd4j.createBuffer(new float[]{1, 2, 3}, 0); checkTypes(DataType.FLOAT, f, 3); assertEquals(useWs, f.isAttached()); testDBOps(f); f = Nd4j.createBufferDetached(new float[]{1, 2, 3}); checkTypes(DataType.FLOAT, f, 3); assertFalse(f.isAttached()); testDBOps(f); //Double DataBuffer d = Nd4j.createBuffer(new double[]{1, 2, 3}); checkTypes(DataType.DOUBLE, d, 3); assertEquals(useWs, d.isAttached()); testDBOps(d); d = Nd4j.createBuffer(new double[]{1, 2, 3}, 0); checkTypes(DataType.DOUBLE, d, 3); assertEquals(useWs, d.isAttached()); testDBOps(d); d = Nd4j.createBufferDetached(new double[]{1, 2, 3}); checkTypes(DataType.DOUBLE, d, 3); assertFalse(d.isAttached()); testDBOps(d); //Int DataBuffer i = Nd4j.createBuffer(new int[]{1, 2, 3}); checkTypes(DataType.INT, i, 3); assertEquals(useWs, i.isAttached()); testDBOps(i); i = Nd4j.createBuffer(new int[]{1, 2, 3}); checkTypes(DataType.INT, i, 3); assertEquals(useWs, i.isAttached()); testDBOps(i); i = Nd4j.createBufferDetached(new int[]{1, 2, 3}); checkTypes(DataType.INT, i, 3); assertFalse(i.isAttached()); testDBOps(i); //Long DataBuffer l = Nd4j.createBuffer(new long[]{1, 2, 3}); checkTypes(DataType.LONG, l, 3); assertEquals(useWs, l.isAttached()); testDBOps(l); l = Nd4j.createBuffer(new long[]{1, 2, 3}); checkTypes(DataType.LONG, l, 3); assertEquals(useWs, l.isAttached()); testDBOps(l); l = Nd4j.createBufferDetached(new long[]{1, 2, 3}); checkTypes(DataType.LONG, l, 3); assertFalse(l.isAttached()); testDBOps(l); //byte // DataBuffer b = Nd4j.createBuffer(new byte[]{1, 2, 3}); // checkTypes(DataType.BYTE, b, 3); // testDBOps(b); // // b = Nd4j.createBuffer(new byte[]{1, 2, 3}, 0); // checkTypes(DataType.BYTE, b, 3); // testDBOps(b); // // b = Nd4j.createBufferDetached(new byte[]{1,2,3}); // checkTypes(DataType.BYTE, b, 3); // testDBOps(b); //short //TODO } } }
Example #21
Source File: DataBufferTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testCreateTypedBuffer() { WorkspaceConfiguration initialConfig = WorkspaceConfiguration.builder().initialSize(10 * 1024L * 1024L) .policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); MemoryWorkspace workspace = Nd4j.getWorkspaceManager().createNewWorkspace(initialConfig, "WorkspaceId"); for (String sourceType : new String[]{"int", "long", "float", "double", "short", "byte", "boolean"}) { for (DataType dt : DataType.values()) { if (dt == DataType.UTF8 || dt == DataType.COMPRESSED || dt == DataType.UNKNOWN) { continue; } // log.info("Testing source [{}]; target: [{}]", sourceType, dt); for (boolean useWs : new boolean[]{false, true}) { try (MemoryWorkspace ws = (useWs ? workspace.notifyScopeEntered() : null)) { DataBuffer db1; DataBuffer db2; switch (sourceType) { case "int": db1 = Nd4j.createTypedBuffer(new int[]{1, 2, 3}, dt); db2 = Nd4j.createTypedBufferDetached(new int[]{1, 2, 3}, dt); break; case "long": db1 = Nd4j.createTypedBuffer(new long[]{1, 2, 3}, dt); db2 = Nd4j.createTypedBufferDetached(new long[]{1, 2, 3}, dt); break; case "float": db1 = Nd4j.createTypedBuffer(new float[]{1, 2, 3}, dt); db2 = Nd4j.createTypedBufferDetached(new float[]{1, 2, 3}, dt); break; case "double": db1 = Nd4j.createTypedBuffer(new double[]{1, 2, 3}, dt); db2 = Nd4j.createTypedBufferDetached(new double[]{1, 2, 3}, dt); break; case "short": db1 = Nd4j.createTypedBuffer(new short[]{1, 2, 3}, dt); db2 = Nd4j.createTypedBufferDetached(new short[]{1, 2, 3}, dt); break; case "byte": db1 = Nd4j.createTypedBuffer(new byte[]{1, 2, 3}, dt); db2 = Nd4j.createTypedBufferDetached(new byte[]{1, 2, 3}, dt); break; case "boolean": db1 = Nd4j.createTypedBuffer(new boolean[]{true, false, true}, dt); db2 = Nd4j.createTypedBufferDetached(new boolean[]{true, false, true}, dt); break; default: throw new RuntimeException(); } checkTypes(dt, db1, 3); checkTypes(dt, db2, 3); assertEquals(useWs, db1.isAttached()); assertFalse(db2.isAttached()); if(!sourceType.equals("boolean")){ testDBOps(db1); testDBOps(db2); } } } } } }
Example #22
Source File: SpecialWorkspaceTests.java From nd4j with Apache License 2.0 | 4 votes |
@Test public void testVariableTimeSeries2() throws Exception { WorkspaceConfiguration configuration = WorkspaceConfiguration.builder().initialSize(0).overallocationLimit(3.0) .policyAllocation(AllocationPolicy.OVERALLOCATE).policySpill(SpillPolicy.REALLOCATE) .policyLearning(LearningPolicy.FIRST_LOOP).policyReset(ResetPolicy.ENDOFBUFFER_REACHED).build(); Nd4jWorkspace workspace = (Nd4jWorkspace) Nd4j.getWorkspaceManager().getWorkspaceForCurrentThread(configuration, "WS1"); workspace.enableDebug(true); try (MemoryWorkspace ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "WS1")) { Nd4j.create(500); Nd4j.create(500); } assertEquals(0, workspace.getStepNumber()); long requiredMemory = 1000 * Nd4j.sizeOfDataType(); long shiftedSize = ((long) (requiredMemory * 1.3)) + (8 - (((long) (requiredMemory * 1.3)) % 8)); assertEquals(requiredMemory, workspace.getSpilledSize()); assertEquals(shiftedSize, workspace.getInitialBlockSize()); assertEquals(workspace.getInitialBlockSize() * 4, workspace.getCurrentSize()); for (int i = 0; i < 100; i++) { try (MemoryWorkspace ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "WS1")) { Nd4j.create(500); Nd4j.create(500); Nd4j.create(500); } } assertEquals(workspace.getInitialBlockSize() * 4, workspace.getCurrentSize()); assertEquals(0, workspace.getNumberOfPinnedAllocations()); assertEquals(0, workspace.getNumberOfExternalAllocations()); assertEquals(0, workspace.getSpilledSize()); assertEquals(0, workspace.getPinnedSize()); }
Example #23
Source File: SpecialTests.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testYoloS(){ //Nd4j.getExecutioner().enableDebugMode(true); //Nd4j.getExecutioner().enableVerboseMode(true); //Nd4j.setDefaultDataTypes(DataType.DOUBLE, DataType.DOUBLE); WorkspaceConfiguration WS_ALL_LAYERS_ACT_CONFIG = WorkspaceConfiguration.builder() .initialSize(10 * 1024 * 1024) .overallocationLimit(0.05) .policyLearning(LearningPolicy.FIRST_LOOP) .policyReset(ResetPolicy.BLOCK_LEFT) .policySpill(SpillPolicy.REALLOCATE) .policyAllocation(AllocationPolicy.OVERALLOCATE) .build(); INDArray labels = Nd4j.create(DataType.DOUBLE, 1,7,5,7); for( int i=0; i<10; i++ ){ try(val ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(WS_ALL_LAYERS_ACT_CONFIG, "ws")){ // System.out.println("STARTING: " + i); val nhw = new long[]{1, 5, 7}; val size1 = labels.size(1); INDArray classLabels = labels.get(all(), interval(4,size1), all(), all()); //Shape: [minibatch, nClasses, H, W] INDArray maskObjectPresent = classLabels.sum(Nd4j.createUninitialized(DataType.DOUBLE, nhw, 'c'), 1).castTo(DataType.BOOL); //Shape: [minibatch, H, W] INDArray labelTLXY = labels.get(all(), interval(0,2), all(), all()); INDArray labelBRXY = labels.get(all(), interval(2,4), all(), all()); Nd4j.getExecutioner().commit(); INDArray labelCenterXY = labelTLXY.add(labelBRXY); val m = labelCenterXY.muli(0.5); //In terms of grid units INDArray labelsCenterXYInGridBox = labelCenterXY.dup(labelCenterXY.ordering()); //[mb, 2, H, W] Nd4j.getExecutioner().commit(); // System.out.println("DONE: " + i); } } }
Example #24
Source File: Nd4jEnvironmentThread.java From jstarcraft-ai with Apache License 2.0 | 2 votes |
/** * * 构建缓存 * * @param size */ void constructCache(int size) { array = new float[size]; WorkspaceConfiguration configuration = WorkspaceConfiguration.builder().initialSize(size).policyAllocation(AllocationPolicy.STRICT).policyLearning(LearningPolicy.NONE).build(); space = Nd4j.getWorkspaceManager().createNewWorkspace(configuration, "ND4J"); }