org.deeplearning4j.nn.conf.distribution.Distribution Java Examples
The following examples show how to use
org.deeplearning4j.nn.conf.distribution.Distribution.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: BaseNetConfigDeserializer.java From deeplearning4j with Apache License 2.0 | 6 votes |
protected void handleWeightInitBackwardCompatibility(BaseLayer baseLayer, ObjectNode on){ if(on != null && on.has("weightInit") ){ //Legacy format JSON if(on.has("weightInit")){ String wi = on.get("weightInit").asText(); try{ WeightInit w = WeightInit.valueOf(wi); Distribution d = null; if(w == WeightInit.DISTRIBUTION && on.has("dist")){ String dist = on.get("dist").toString(); d = NeuralNetConfiguration.mapper().readValue(dist, Distribution.class); } IWeightInit iwi = w.getWeightInitFunction(d); baseLayer.setWeightInitFn(iwi); } catch (Throwable t){ log.warn("Failed to infer weight initialization from legacy JSON format",t); } } } }
Example #2
Source File: WeightNoise.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr) { ParamInitializer init = layer.conf().getLayer().initializer(); INDArray param = layer.getParam(paramKey); if (train && init.isWeightParam(layer.conf().getLayer(), paramKey) || (applyToBias && init.isBiasParam(layer.conf().getLayer(), paramKey))) { org.nd4j.linalg.api.rng.distribution.Distribution dist = Distributions.createDistribution(distribution); INDArray noise = dist.sample(param.ulike()); INDArray out = workspaceMgr.createUninitialized(ArrayType.INPUT, param.dataType(), param.shape(), param.ordering()); if (additive) { Nd4j.getExecutioner().exec(new AddOp(param, noise,out)); } else { Nd4j.getExecutioner().exec(new MulOp(param, noise, out)); } return out; } return param; }
Example #3
Source File: TestConvolution.java From deeplearning4j with Apache License 2.0 | 5 votes |
private static DenseLayer fullyConnected(String name, int out, double bias, Distribution dist) { return new DenseLayer.Builder().name(name) .nOut(out) .biasInit(bias) .dist(dist) .build(); }
Example #4
Source File: WeightNoise.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * @param distribution Distribution for noise * @param applyToBias If true: apply to biases also. If false (default): apply only to weights * @param additive If true: noise is added to weights. If false: noise is multiplied by weights */ public WeightNoise(@JsonProperty("distribution") Distribution distribution, @JsonProperty("applyToBias") boolean applyToBias, @JsonProperty("additive") boolean additive) { this.distribution = distribution; this.applyToBias = applyToBias; this.additive = additive; }
Example #5
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 5 votes |
public GraphBuilder nOutReplace(String layerName, int nOut, WeightInit scheme, Distribution dist) { if(scheme == WeightInit.DISTRIBUTION) { throw new UnsupportedOperationException("Not supported!, Use " + "nOutReplace(layerNum, nOut, new WeightInitDistribution(dist), new WeightInitDistribution(distNext)) instead!"); } return nOutReplace(layerName, nOut, scheme.getWeightInitFunction(), new WeightInitDistribution(dist)); }
Example #6
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 5 votes |
public GraphBuilder nOutReplace(String layerName, int nOut, Distribution dist, WeightInit scheme) { if(scheme == WeightInit.DISTRIBUTION) { throw new UnsupportedOperationException("Not supported!, Use " + "nOutReplace(layerNum, nOut, new WeightInitDistribution(dist), new WeightInitDistribution(distNext)) instead!"); } return nOutReplace(layerName, nOut, new WeightInitDistribution(dist), scheme.getWeightInitFunction()); }
Example #7
Source File: WeightInitDistribution.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray init(double fanIn, double fanOut, long[] shape, char order, INDArray paramView) { //org.nd4j.linalg.api.rng.distribution.Distribution not serializable org.nd4j.linalg.api.rng.distribution.Distribution dist = Distributions.createDistribution(distribution); if (dist instanceof OrthogonalDistribution) { dist.sample(paramView.reshape(order, shape)); } else { dist.sample(paramView); } return paramView.reshape(order, shape); }
Example #8
Source File: WeightInitDistribution.java From deeplearning4j with Apache License 2.0 | 5 votes |
public WeightInitDistribution(@JsonProperty("distribution") Distribution distribution) { if(distribution == null) { // Would fail later below otherwise throw new IllegalArgumentException("Must set distribution!"); } this.distribution = distribution; }
Example #9
Source File: BaseLayerSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public T weightInit(Distribution distribution){ weightInit(WeightInit.DISTRIBUTION); return dist(distribution); }
Example #10
Source File: AlexNetTrain.java From dl4j-tutorials with MIT License | 4 votes |
private static DenseLayer fullyConnected(String name, int out, double bias, double dropOut, Distribution dist) { return new DenseLayer.Builder().name(name).nOut(out).biasInit(bias).dropOut(dropOut).dist(dist).build(); }
Example #11
Source File: ComputationGraphConfiguration.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** * Handle {@link WeightInit} and {@link Distribution} from legacy configs in Json format. Copied from handling of {@link Activation} * above. * @return True if all is well and layer iteration shall continue. False else-wise. */ private static void handleLegacyWeightInitFromJson(String json, Layer layer, ObjectMapper mapper, JsonNode vertices) { if (layer instanceof BaseLayer && ((BaseLayer) layer).getWeightInitFn() == null) { String layerName = layer.getLayerName(); try { if (vertices == null) { JsonNode jsonNode = mapper.readTree(json); vertices = jsonNode.get("vertices"); } JsonNode vertexNode = vertices.get(layerName); JsonNode layerVertexNode = vertexNode.get("LayerVertex"); if (layerVertexNode == null || !layerVertexNode.has("layerConf") || !layerVertexNode.get("layerConf").has("layer")) { return; } JsonNode layerWrapperNode = layerVertexNode.get("layerConf").get("layer"); if (layerWrapperNode == null || layerWrapperNode.size() != 1) { return; } JsonNode layerNode = layerWrapperNode.elements().next(); JsonNode weightInit = layerNode.get("weightInit"); //Should only have 1 element: "dense", "output", etc JsonNode distribution = layerNode.get("dist"); Distribution dist = null; if(distribution != null) { dist = mapper.treeToValue(distribution, Distribution.class); } if (weightInit != null) { final IWeightInit wi = WeightInit.valueOf(weightInit.asText()).getWeightInitFunction(dist); ((BaseLayer) layer).setWeightInitFn(wi); } } catch (IOException e) { log.warn("Layer with null ActivationFn field or pre-0.7.2 activation function detected: could not parse JSON", e); } } }
Example #12
Source File: WeightNoise.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** * @param distribution Distribution for additive noise */ public WeightNoise(Distribution distribution) { this(distribution, false, true); }
Example #13
Source File: MultiLayerConfiguration.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** * Handle {@link WeightInit} and {@link Distribution} from legacy configs in Json format. Copied from handling of {@link Activation} * above. * @return True if all is well and layer iteration shall continue. False else-wise. */ private static boolean handleLegacyWeightInitFromJson(String json, Layer l, ObjectMapper mapper, JsonNode confs, int layerCount) { if ((l instanceof BaseLayer) && ((BaseLayer) l).getWeightInitFn() == null) { try { JsonNode jsonNode = mapper.readTree(json); if (confs == null) { confs = jsonNode.get("confs"); } if (confs instanceof ArrayNode) { ArrayNode layerConfs = (ArrayNode) confs; JsonNode outputLayerNNCNode = layerConfs.get(layerCount); if (outputLayerNNCNode == null) return false; //Should never happen... JsonNode layerWrapperNode = outputLayerNNCNode.get("layer"); if (layerWrapperNode == null || layerWrapperNode.size() != 1) { return true; } JsonNode layerNode = layerWrapperNode.elements().next(); JsonNode weightInit = layerNode.get("weightInit"); //Should only have 1 element: "dense", "output", etc JsonNode distribution = layerNode.get("dist"); Distribution dist = null; if(distribution != null) { dist = mapper.treeToValue(distribution, Distribution.class); } if (weightInit != null) { final IWeightInit wi = WeightInit.valueOf(weightInit.asText()).getWeightInitFunction(dist); ((BaseLayer) l).setWeightInitFn(wi); } } } catch (IOException e) { log.warn("Layer with null WeightInit detected: " + l.getLayerName() + ", could not parse JSON", e); } } return true; }
Example #14
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 3 votes |
/** * Modify the architecture of a layer by changing nOut * Note this will also affect the layer that follows the layer specified, unless it is the output layer * Can specify different weight init schemes for the specified layer and the layer that follows it. * * @param layerNum The index of the layer to change nOut of * @param nOut Value of nOut to change to * @param scheme Weight init scheme to use for params in layerNum * @param distNext Distribution to use for parmas in layerNum+1 * @return Builder * @see org.deeplearning4j.nn.weights.WeightInitDistribution */ public Builder nOutReplace(int layerNum, int nOut, WeightInit scheme, Distribution distNext) { if(scheme == WeightInit.DISTRIBUTION) { throw new UnsupportedOperationException("Not supported!, Use " + "nOutReplace(int layerNum, int nOut, Distribution dist, Distribution distNext) instead!"); } return nOutReplace(layerNum, nOut, scheme.getWeightInitFunction(), new WeightInitDistribution(distNext)); }
Example #15
Source File: FineTuneConfiguration.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Set weight initialization scheme to random sampling via the specified distribution. * Equivalent to: {@code .weightInit(new WeightInitDistribution(distribution))} * * @param distribution Distribution to use for weight initialization */ public Builder weightInit(Distribution distribution){ return weightInit(new WeightInitDistribution(distribution)); }
Example #16
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modify the architecture of a vertex layer by changing nIn of the specified layer.<br> * Note that only the specified layer will be modified - all other layers will not be changed by this call. * * @param layerName The name of the layer to change nIn of * @param nIn Value of nIn to change to * @param scheme Weight init scheme to use for params in layerName and the layers following it * @return GraphBuilder */ public GraphBuilder nInReplace(String layerName, int nIn, WeightInit scheme, Distribution dist) { return nInReplace(layerName, nIn, scheme.getWeightInitFunction(dist)); }
Example #17
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modified nOut of specified layer. Also affects layers following layerName unless they are output layers * @param layerName The name of the layer to change nOut of * @param nOut Value of nOut to change to * @param dist Weight distribution scheme to use for layerName * @param distNext Weight distribution scheme for layers following layerName * @return GraphBuilder * @see org.deeplearning4j.nn.weights.WeightInit DISTRIBUTION */ public GraphBuilder nOutReplace(String layerName, int nOut, Distribution dist, Distribution distNext) { return nOutReplace(layerName, nOut, new WeightInitDistribution(dist), new WeightInitDistribution(distNext)); }
Example #18
Source File: WeightNoise.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * @param distribution Distribution for noise * @param additive If true: noise is added to weights. If false: noise is multiplied by weights */ public WeightNoise(Distribution distribution, boolean additive) { this(distribution, false, additive); }
Example #19
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modify the architecture of a vertex layer by changing nOut * Note this will also affect the vertex layer that follows the layer specified, unless it is the output layer * Currently does not support modifying nOut of layers that feed into non-layer vertices like merge, subset etc * To modify nOut for such vertices use remove vertex, followed by add vertex * Can specify different weight init schemes for the specified layer and the layer that follows it. * * @param layerName The name of the layer to change nOut of * @param nOut Value of nOut to change to * @param dist Weight distribution scheme to use * @return GraphBuilder * @see org.deeplearning4j.nn.weights.WeightInit DISTRIBUTION */ public GraphBuilder nOutReplace(String layerName, int nOut, Distribution dist) { return nOutReplace(layerName, nOut, dist, dist); }
Example #20
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modify the architecture of a vertex layer by changing nIn of the specified layer.<br> * Note that only the specified layer will be modified - all other layers will not be changed by this call. * * @param layerNum The number of the layer to change nIn of * @param nIn Value of nIn to change to * @param scheme Weight init scheme to use for params in layerName * @return Builder */ public Builder nInReplace(int layerNum, int nIn, WeightInit scheme, Distribution dist) { return nInReplace(layerNum, nIn, scheme.getWeightInitFunction(dist)); }
Example #21
Source File: NeuralNetConfiguration.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Set weight initialization scheme to random sampling via the specified distribution. * Equivalent to: {@code .weightInit(new WeightInitDistribution(distribution))} * Note: values set by this method will be applied to all applicable layers in the network, unless a different * value is explicitly set on a given layer. In other words: values set via this method are used as the default * value, and can be overridden on a per-layer basis. * * @param distribution Distribution to use for weight initialization */ public Builder weightInit(Distribution distribution){ return weightInit(new WeightInitDistribution(distribution)); }
Example #22
Source File: BaseRecurrentLayer.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Set the weight initialization for the recurrent weights, based on the specified distribution. Not that if * this is not set explicitly, the same weight initialization as the layer input weights is also used for the * recurrent weights. * * @param dist Distribution to use for initializing the recurrent weights */ public T weightInitRecurrent(Distribution dist) { this.setWeightInitFnRecurrent(new WeightInitDistribution(dist)); return (T) this; }
Example #23
Source File: BaseLayer.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Set weight initialization scheme to random sampling via the specified distribution. Equivalent to: {@code * .weightInit(new WeightInitDistribution(distribution))} * * @param distribution Distribution to use for weight initialization */ public T weightInit(Distribution distribution) { return weightInit(new WeightInitDistribution(distribution)); }
Example #24
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modify the architecture of a layer by changing nOut * Note this will also affect the layer that follows the layer specified, unless it is the output layer * Can specify different weight init schemes for the specified layer and the layer that follows it. * * @param layerNum The index of the layer to change nOut of * @param nOut Value of nOut to change to * @param dist Distribution to use for parmas in layerNum * @param schemeNext Weight init scheme to use for params in layerNum+1 * @return Builder * @see org.deeplearning4j.nn.weights.WeightInitDistribution */ public Builder nOutReplace(int layerNum, int nOut, Distribution dist, WeightInit schemeNext) { return nOutReplace(layerNum, nOut, new WeightInitDistribution(dist), schemeNext.getWeightInitFunction()); }
Example #25
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modify the architecture of a layer by changing nOut * Note this will also affect the layer that follows the layer specified, unless it is the output layer * Can specify different weight init schemes for the specified layer and the layer that follows it. * * @param layerNum The index of the layer to change nOut of * @param nOut Value of nOut to change to * @param dist Distribution to use for params in the layerNum * @param distNext Distribution to use for parmas in layerNum+1 * @return Builder * @see org.deeplearning4j.nn.weights.WeightInitDistribution */ public Builder nOutReplace(int layerNum, int nOut, Distribution dist, Distribution distNext) { return nOutReplace(layerNum, nOut, new WeightInitDistribution(dist), new WeightInitDistribution(distNext)); }
Example #26
Source File: TransferLearning.java From deeplearning4j with Apache License 2.0 | 2 votes |
/** * Modify the architecture of a layer by changing nOut * Note this will also affect the layer that follows the layer specified, unless it is the output layer * * @param layerNum The index of the layer to change nOut of * @param nOut Value of nOut to change to * @param dist Distribution to use in conjunction with weight init DISTRIBUTION for params in layernum and layernum+1 * @return Builder * @see org.deeplearning4j.nn.weights.WeightInit DISTRIBUTION */ public Builder nOutReplace(int layerNum, int nOut, Distribution dist) { return nOutReplace(layerNum, nOut, new WeightInitDistribution(dist), new WeightInitDistribution(dist)); }