weka.classifiers.trees.J48 Java Examples
The following examples show how to use
weka.classifiers.trees.J48.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SaveModel.java From Hands-On-Artificial-Intelligence-with-Java-for-Beginners with MIT License | 7 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { DataSource src = new DataSource("/Users/admin/Documents/NetBeansProjects/SaveModel/segment-challenge.arff"); Instances dt = src.getDataSet(); dt.setClassIndex(dt.numAttributes() - 1); String[] options = new String[4]; options[0] = "-C"; options[1] = "0.1"; options[2] = "-M"; options[3] = "2"; J48 mytree = new J48(); mytree.setOptions(options); mytree.buildClassifier(dt); weka.core.SerializationHelper.write("/Users/admin/Documents/NetBeansProjects/SaveModel/myDT.model", mytree); } catch (Exception e) { System.out.println("Error!!!!\n" + e.getMessage()); } }
Example #2
Source File: DecisionTree.java From chuidiang-ejemplos with GNU Lesser General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { Classifier j48 = new J48(); Instances trainingData = GenerateTestVessels.getData(); j48.buildClassifier(trainingData); System.out.println(j48); double[] vesselUnderTest = GenerateTestVessels.getBarco(5); DenseInstance inst = new DenseInstance(1.0,vesselUnderTest); inst.setDataset(trainingData); inst.setClassMissing(); System.out.println(inst); double result = j48.classifyInstance(inst); System.out.println(GenerateTestVessels.types[(int)result]); SerializationHelper.write(new FileOutputStream("tmp"), j48); J48 j48Read = (J48)SerializationHelper.read(new FileInputStream("tmp")); }
Example #3
Source File: LoadModel.java From Hands-On-Artificial-Intelligence-with-Java-for-Beginners with MIT License | 6 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try{ J48 mytree = (J48) weka.core.SerializationHelper.read("/Users/admin/Documents/NetBeansProjects/LoadModel/myDT.model"); DataSource src1 = new DataSource("/Users/admin/Documents/NetBeansProjects/LoadModel/segment-test.arff"); Instances tdt = src1.getDataSet(); tdt.setClassIndex(tdt.numAttributes() - 1); System.out.println("ActualClass \t ActualValue \t PredictedValue \t PredictedClass"); for (int i = 0; i < tdt.numInstances(); i++) { String act = tdt.instance(i).stringValue(tdt.instance(i).numAttributes() - 1); double actual = tdt.instance(i).classValue(); Instance inst = tdt.instance(i); double predict = mytree.classifyInstance(inst); String pred = inst.toString(inst.numAttributes() - 1); System.out.println(act + " \t\t " + actual + " \t\t " + predict + " \t\t " + pred); } } catch(Exception e){ System.out.println("Error!!!!\n" + e.getMessage()); } }
Example #4
Source File: BookDecisionTree.java From Java-for-Data-Science with MIT License | 6 votes |
public static void main(String[] args) { try { BookDecisionTree decisionTree = new BookDecisionTree("books.arff"); J48 tree = decisionTree.performTraining(); System.out.println(tree.toString()); Instance testInstance = decisionTree. getTestInstance("Leather", "yes", "historical"); int result = (int) tree.classifyInstance(testInstance); String results = decisionTree.trainingData.attribute(3).value(result); System.out.println( "Test with: " + testInstance + " Result: " + results); testInstance = decisionTree. getTestInstance("Paperback", "no", "historical"); result = (int) tree.classifyInstance(testInstance); results = decisionTree.trainingData.attribute(3).value(result); System.out.println( "Test with: " + testInstance + " Result: " + results); } catch (Exception ex) { ex.printStackTrace(); } }
Example #5
Source File: InversePowerLawExtrapolationTester.java From AILibs with GNU Affero General Public License v3.0 | 6 votes |
private LearningCurveExtrapolator createExtrapolationMethod(final int[] xValues) throws Exception { Instances dataset = null; OpenmlConnector client = new OpenmlConnector(); try { DataSetDescription description = client.dataGet(42); File file = client.datasetGet(description); DataSource source = new DataSource(file.getCanonicalPath()); dataset = source.getDataSet(); dataset.setClassIndex(dataset.numAttributes() - 1); Attribute targetAttribute = dataset.attribute(description.getDefault_target_attribute()); dataset.setClassIndex(targetAttribute.index()); } catch (Exception e) { throw new IOException("Could not load data set from OpenML!", e); } return new LearningCurveExtrapolator(new InversePowerLawExtrapolationMethod(), new WekaClassifier(new J48()), new WekaInstances(dataset), 0.7d, xValues, new SimpleRandomSamplingFactory<>(), 1l); }
Example #6
Source File: ActivityRecognition.java From Machine-Learning-in-Java with MIT License | 5 votes |
public static void main(String[] args) throws Exception{ String databasePath = "data/features.arff"; // Load the data in arff format Instances data = new Instances(new BufferedReader(new FileReader(databasePath))); // Set class the last attribute as class data.setClassIndex(data.numAttributes() - 1); // Build a basic decision tree model String[] options = new String[]{}; J48 model = new J48(); model.setOptions(options); model.buildClassifier(data); // Output decision tree System.out.println("Decision tree model:\n"+model); // Output source code implementing the decision tree System.out.println("Source code:\n"+model.toSource("ActivityRecognitionEngine")); // Check accuracy of model using 10-fold cross-validation Evaluation eval = new Evaluation(data); eval.crossValidateModel(model, data, 10, new Random(1), new String[] {}); System.out.println("Model performance:\n"+eval.toSummaryString()); String[] activities = new String[]{"Walk", "Walk", "Walk", "Run", "Walk", "Run", "Run", "Sit", "Sit", "Sit"}; DiscreteLowPass dlpFilter = new DiscreteLowPass(3); for(String str : activities){ System.out.println(str +" -> "+ dlpFilter.filter(str)); } }
Example #7
Source File: CAWPE.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * Uses the 'basic UCI' set up: * Comps: SVML, MLP, NN, Logistic, C4.5 * Weight: TrainAcc(4) (train accuracies to the power 4) * Vote: MajorityConfidence (summing probability distributions) */ public final void setupDefaultSettings_NoLogistic() { this.ensembleName = "CAWPE-NoLogistic"; this.weightingScheme = new TrainAcc(4); this.votingScheme = new MajorityConfidence(); CrossValidationEvaluator cv = new CrossValidationEvaluator(seed, false, false, false, false); cv.setNumFolds(10); this.trainEstimator = cv; Classifier[] classifiers = new Classifier[4]; String[] classifierNames = new String[4]; SMO smo = new SMO(); smo.turnChecksOff(); smo.setBuildLogisticModels(true); PolyKernel kl = new PolyKernel(); kl.setExponent(1); smo.setKernel(kl); smo.setRandomSeed(seed); classifiers[0] = smo; classifierNames[0] = "SVML"; kNN k=new kNN(100); k.setCrossValidate(true); k.normalise(false); k.setDistanceFunction(new EuclideanDistance()); classifiers[1] = k; classifierNames[1] = "NN"; classifiers[2] = new J48(); classifierNames[2] = "C4.5"; classifiers[3] = new MultilayerPerceptron(); classifierNames[3] = "MLP"; setClassifiers(classifiers, classifierNames, null); }
Example #8
Source File: MakingPredictions.java From Hands-On-Artificial-Intelligence-with-Java-for-Beginners with MIT License | 5 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { DataSource src = new DataSource("/Users/admin/Documents/NetBeansProjects/MakingPredictions/segment-challenge.arff"); Instances dt = src.getDataSet(); dt.setClassIndex(dt.numAttributes() - 1); String[] options = new String[4]; options[0] = "-C"; options[1] = "0.1"; options[2] = "-M"; options[3] = "2"; J48 mytree = new J48(); mytree.setOptions(options); mytree.buildClassifier(dt); DataSource src1 = new DataSource("/Users/admin/Documents/NetBeansProjects/MakingPredictions/segment-test.arff"); Instances tdt = src1.getDataSet(); tdt.setClassIndex(tdt.numAttributes()-1); System.out.println("ActualClass \t ActualValue \t PredictedValue \t PredictedClass"); for (int i = 0; i < tdt.numInstances(); i++) { String act = tdt.instance(i).stringValue(tdt.instance(i).numAttributes()-1); double actual = tdt.instance(i).classValue(); Instance inst = tdt.instance(i); double predict = mytree.classifyInstance(inst); String pred = inst.toString(inst .numAttributes()-1); System.out.println(act + " \t\t " + actual + " \t\t " + predict + " \t\t " + pred); } } catch (Exception e) { System.out.println(e.getCause()); } }
Example #9
Source File: DevelopClassifier.java From Hands-On-Artificial-Intelligence-with-Java-for-Beginners with MIT License | 5 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try{ DataSource src = new DataSource("/Users/admin/Documents/NetBeansProjects/DevelopClassifier/vote.arff"); Instances dt = src.getDataSet(); dt.setClassIndex(dt.numAttributes()-1); String[] options = new String[4]; options[0] = "-C"; options[1] = "0.1"; options[2] = "-M"; options[3] = "2"; J48 tree = new J48(); tree.setOptions(options); tree.buildClassifier(dt); System.out.println(tree.getCapabilities().toString()); System.out.println(tree.graph()); //uncomment the following three lines of code for Naive Bayes NaiveBayes nb = new NaiveBayes(); nb.buildClassifier(dt); System.out.println(nb.getCapabilities().toString()); } catch(Exception e){ System.out.println("Error!!!!\n" + e.getMessage()); } }
Example #10
Source File: BookDecisionTree.java From Java-for-Data-Science with MIT License | 5 votes |
private J48 performTraining() { J48 j48 = new J48(); String[] options = {"-U"}; // Use unpruned tree. -U try { j48.setOptions(options); j48.buildClassifier(trainingData); } catch (Exception ex) { ex.printStackTrace(); } return j48; }
Example #11
Source File: TestWekaJ48.java From Java-Data-Analysis with MIT License | 5 votes |
public static void main(String[] args) throws Exception { DataSource source = new DataSource("data/AnonFruit.arff"); Instances instances = source.getDataSet(); instances.setClassIndex(3); // target attribute: (Sweet) J48 j48 = new J48(); // an extension of ID3 j48.setOptions(new String[]{"-U"}); // use unpruned tree j48.buildClassifier(instances); for (Instance instance : instances) { double prediction = j48.classifyInstance(instance); System.out.printf("%4.0f%4.0f%n", instance.classValue(), prediction); } }
Example #12
Source File: EnsembleProvider.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
/** * Initializes the CAWPE ensemble model consisting of five classifiers (SMO, * KNN, J48, Logistic and MLP) using a majority voting strategy. The ensemble * uses Weka classifiers. It refers to "Heterogeneous ensemble of standard * classification algorithms" (HESCA) as described in Lines, Jason & Taylor, * Sarah & Bagnall, Anthony. (2018). Time Series Classification with HIVE-COTE: * The Hierarchical Vote Collective of Transformation-Based Ensembles. ACM * Transactions on Knowledge Discovery from Data. 12. 1-35. 10.1145/3182382. * * @param seed * Seed used within the classifiers and the majority confidence * voting scheme * @param numFolds * Number of folds used within the determination of the classifier * weights for the {@link MajorityConfidenceVote} * @return Returns an initialized (but untrained) ensemble model. * @throws Exception * Thrown when the initialization has failed */ public static Classifier provideCAWPEEnsembleModel(final int seed, final int numFolds) throws Exception { Classifier[] classifiers = new Classifier[5]; Vote voter = new MajorityConfidenceVote(numFolds, seed); SMO smo = new SMO(); smo.turnChecksOff(); smo.setBuildCalibrationModels(true); PolyKernel kl = new PolyKernel(); kl.setExponent(1); smo.setKernel(kl); smo.setRandomSeed(seed); classifiers[0] = smo; IBk k = new IBk(100); k.setCrossValidate(true); EuclideanDistance ed = new EuclideanDistance(); ed.setDontNormalize(true); k.getNearestNeighbourSearchAlgorithm().setDistanceFunction(ed); classifiers[1] = k; J48 c45 = new J48(); c45.setSeed(seed); classifiers[2] = c45; classifiers[3] = new Logistic(); classifiers[4] = new MultilayerPerceptron(); voter.setClassifiers(classifiers); return voter; }
Example #13
Source File: AnchorpointsCreationTest.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
@Test public void anchorpointsAreCreatedAndHaveTheValues() throws IOException, InvalidAnchorPointsException, AlgorithmException, InterruptedException, ClassNotFoundException, DatasetCreationException { int[] xValues = new int[] { 2, 4, 8, 16, 32, 64 }; Instances dataset = null; OpenmlConnector client = new OpenmlConnector(); try { DataSetDescription description = client.dataGet(42); File file = client.datasetGet(description); DataSource source = new DataSource(file.getCanonicalPath()); dataset = source.getDataSet(); dataset.setClassIndex(dataset.numAttributes() - 1); Attribute targetAttribute = dataset.attribute(description.getDefault_target_attribute()); dataset.setClassIndex(targetAttribute.index()); } catch (Exception e) { throw new IOException("Could not load data set from OpenML!", e); } // final LearningCurveExtrapolationMethod extrapolationMethod, final ISupervisedLearner<I, D> learner, final D dataset, final double trainsplit, final int[] anchorPoints, // final ISamplingAlgorithmFactory<?, D, ? extends ASamplingAlgorithm<D>> samplingAlgorithmFactory, final long seed WekaInstances simpleDataset = new WekaInstances(dataset); LearningCurveExtrapolator extrapolator = new LearningCurveExtrapolator((x, y, ds) -> { Assert.assertArrayEquals(x, xValues); for (int i = 0; i < y.length; i++) { Assert.assertTrue(y[i] > 0.0d); } return null; }, new WekaClassifier(new J48()), simpleDataset, 0.7d, xValues, new SystematicSamplingFactory<>(), 1l); extrapolator.extrapolateLearningCurve(); }
Example #14
Source File: CC.java From meka with GNU General Public License v3.0 | 4 votes |
public CC() { // default classifier for GUI this.m_Classifier = new J48(); }
Example #15
Source File: DecisionTreeEstimator.java From jMetal with MIT License | 4 votes |
public double doPredictionVariable(int index,S testSolution) { double result = 0.0d; try { int numberOfVariables = solutionList.get(0).getNumberOfVariables(); //Attributes //numeric Attribute attr = new Attribute("my-numeric"); //nominal ArrayList<String> myNomVals = new ArrayList<>(); for (int i=0; i<numberOfVariables; i++) myNomVals.add(VALUE_STRING+i); Attribute attr1 = new Attribute(NOMINAL_STRING, myNomVals); //string Attribute attr2 = new Attribute(MY_STRING, (List<String>)null); //2.create dataset ArrayList<Attribute> attrs = new ArrayList<>(); attrs.add(attr); attrs.add(attr1); attrs.add(attr2); Instances dataset = new Instances("my_dataset", attrs, 0); //Add instances for (S solution : solutionList) { //instaces for (int i = 0; i <numberOfVariables ; i++) { double[] attValues = new double[dataset.numAttributes()]; attValues[0] = ((DoubleSolution)solution).getVariable(i); attValues[1] = dataset.attribute(NOMINAL_STRING).indexOfValue(VALUE_STRING+i); attValues[2] = dataset.attribute(MY_STRING).addStringValue(solution.toString()+i); dataset.add(new DenseInstance(1.0, attValues)); } } //DataSet test Instances datasetTest = new Instances("my_dataset_test", attrs, 0); //Add instances for (int i = 0; i < numberOfVariables; i++) { Instance test = new DenseInstance(3); test.setValue(attr, ((DoubleSolution)testSolution).getVariable(i)); test.setValue(attr1, VALUE_STRING+i); test.setValue(attr2, testSolution.toString()+i); datasetTest.add(test); // dataset.add(test); } //split to 70:30 learn and test set //Preprocess strings (almost no classifier supports them) StringToWordVector filter = new StringToWordVector(); filter.setInputFormat(dataset); dataset = Filter.useFilter(dataset, filter); //Buid classifier dataset.setClassIndex(1); Classifier classifier = new J48(); classifier.buildClassifier(dataset); //resample if needed //dataset = dataset.resample(new Random(42)); dataset.setClassIndex(1); datasetTest.setClassIndex(1); //do eval Evaluation eval = new Evaluation(datasetTest); //trainset eval.evaluateModel(classifier, datasetTest); //testset result = classifier.classifyInstance(datasetTest.get(index)); } catch (Exception e) { result = ((DoubleSolution)testSolution).getVariable(index); } return result; }
Example #16
Source File: CR.java From meka with GNU General Public License v3.0 | 4 votes |
public CR() { // default classifier for GUI this.m_Classifier = new J48(); }
Example #17
Source File: BCC.java From meka with GNU General Public License v3.0 | 4 votes |
public BCC() { // default classifier for GUI this.m_Classifier = new J48(); }
Example #18
Source File: NSR.java From meka with GNU General Public License v3.0 | 4 votes |
public NSR() { // default classifier for GUI this.m_Classifier = new J48(); }
Example #19
Source File: ProblemTransformationMethod.java From meka with GNU General Public License v3.0 | 4 votes |
public ProblemTransformationMethod() { // default classifier for GUI this.m_Classifier = new J48(); }
Example #20
Source File: DecisionTreeEstimator.java From jMetal with MIT License | 4 votes |
public double doPrediction(int index,S testSolution) { double result = 0.0d; try { int numberOfObjectives = solutionList.get(0).getNumberOfObjectives(); //Attributes //numeric Attribute attr = new Attribute("my-numeric"); //nominal ArrayList<String> myNomVals = new ArrayList<>(); for (int i=0; i<numberOfObjectives; i++) myNomVals.add(VALUE_STRING+i); Attribute attr1 = new Attribute(NOMINAL_STRING, myNomVals); //System.out.println(attr1.isNominal()); //string Attribute attr2 = new Attribute(MY_STRING, (List<String>)null); //System.out.println(attr2.isString()); //2.create dataset ArrayList<Attribute> attrs = new ArrayList<>(); attrs.add(attr); attrs.add(attr1); attrs.add(attr2); Instances dataset = new Instances("my_dataset", attrs, 0); //Add instances for (S solution : solutionList) { //instaces for (int i = 0; i <numberOfObjectives ; i++) { double[] attValues = new double[dataset.numAttributes()]; attValues[0] = solution.getObjective(i); attValues[1] = dataset.attribute(NOMINAL_STRING).indexOfValue(VALUE_STRING+i); attValues[2] = dataset.attribute(MY_STRING).addStringValue(solution.toString()+i); dataset.add(new DenseInstance(1.0, attValues)); } } //DataSet test Instances datasetTest = new Instances("my_dataset_test", attrs, 0); //Add instances for (int i = 0; i < numberOfObjectives; i++) { Instance test = new DenseInstance(3); test.setValue(attr, testSolution.getObjective(i)); test.setValue(attr1, VALUE_STRING+i); test.setValue(attr2, testSolution.toString()+i); datasetTest.add(test); // dataset.add(test); } //split to 70:30 learn and test set //Preprocess strings (almost no classifier supports them) StringToWordVector filter = new StringToWordVector(); filter.setInputFormat(dataset); dataset = Filter.useFilter(dataset, filter); //Buid classifier dataset.setClassIndex(1); Classifier classifier = new J48(); classifier.buildClassifier(dataset); //resample if needed //dataset = dataset.resample(new Random(42)); dataset.setClassIndex(1); datasetTest.setClassIndex(1); //do eval Evaluation eval = new Evaluation(datasetTest); //trainset eval.evaluateModel(classifier, datasetTest); //testset result = classifier.classifyInstance(datasetTest.get(index)); } catch (Exception e) { result = testSolution.getObjective(index); } return result; }
Example #21
Source File: MultivariateShapeletTransformClassifier.java From tsml with GNU General Public License v3.0 | 4 votes |
/** * Classifiers used in the HIVE COTE paper */ public void configureDefaultEnsemble(){ //HIVE_SHAPELET_SVMQ HIVE_SHAPELET_RandF HIVE_SHAPELET_RotF //HIVE_SHAPELET_NN HIVE_SHAPELET_NB HIVE_SHAPELET_C45 HIVE_SHAPELET_SVML ensemble=new CAWPE(); ensemble.setWeightingScheme(new TrainAcc(4)); ensemble.setVotingScheme(new MajorityConfidence()); Classifier[] classifiers = new Classifier[7]; String[] classifierNames = new String[7]; SMO smo = new SMO(); smo.turnChecksOff(); smo.setBuildLogisticModels(true); PolyKernel kl = new PolyKernel(); kl.setExponent(2); smo.setKernel(kl); if (seedClassifier) smo.setRandomSeed((int)seed); classifiers[0] = smo; classifierNames[0] = "SVMQ"; RandomForest r=new RandomForest(); r.setNumTrees(500); if(seedClassifier) r.setSeed((int)seed); classifiers[1] = r; classifierNames[1] = "RandF"; RotationForest rf=new RotationForest(); rf.setNumIterations(100); if(seedClassifier) rf.setSeed((int)seed); classifiers[2] = rf; classifierNames[2] = "RotF"; IBk nn=new IBk(); classifiers[3] = nn; classifierNames[3] = "NN"; NaiveBayes nb=new NaiveBayes(); classifiers[4] = nb; classifierNames[4] = "NB"; J48 c45=new J48(); classifiers[5] = c45; classifierNames[5] = "C45"; SMO svml = new SMO(); svml.turnChecksOff(); svml.setBuildLogisticModels(true); PolyKernel k2 = new PolyKernel(); k2.setExponent(1); smo.setKernel(k2); classifiers[6] = svml; classifierNames[6] = "SVML"; ensemble.setClassifiers(classifiers, classifierNames, null); }
Example #22
Source File: Main.java From SM-MLC with GNU Lesser General Public License v3.0 | 4 votes |
/** * Get the classifier to use from the parameters given * * @param numLabels Number of labels in the dataset * @return MultiLabelLearner with the classifier */ MultiLabelLearner getClassifier(int numLabels) { ArrayList<String> learnerName = new ArrayList<String>(10); learnerName.add("CLR"); learnerName.add("MLkNN"); learnerName.add("BPMLL"); learnerName.add("BR-J48"); learnerName.add("LP-J48"); learnerName.add("IBLR-ML"); learnerName.add("RAkEL-LP"); learnerName.add("RAkEL-BR"); learnerName.add("HOMER"); learnerName.add("PS-J48"); learnerName.add("EPS-J48"); learnerName.add("CC-J48"); learnerName.add("ECC-J48"); learnerName.add("BRkNN"); PrunedSets.Strategy pss= PrunedSets.Strategy.values()[0]; //public static final BRkNN.ExtensionType ext = NONE; MultiLabelLearner[] learner = { new CalibratedLabelRanking(new J48()), new MLkNN(10, 1.0), new BPMLL(), new BinaryRelevance(new J48()), new LabelPowerset(new J48()), new IBLR_ML(), new RAkEL(new LabelPowerset(new J48())), new RAkEL(new BinaryRelevance(new J48())), new HOMER(new BinaryRelevance(new J48()), (numLabels < 4 ? numLabels : 4), Method.Random), new PrunedSets(new J48(),2,pss,2), new EnsembleOfPrunedSets(80, 10, 0.2, 2, pss, 2, new J48()), new ClassifierChain(new J48()), new EnsembleOfClassifierChains(new J48(), 10, true, false), new BRkNN(10) }; return learner[learnerName.indexOf(algorithm)]; }
Example #23
Source File: Util.java From recon with GNU General Public License v2.0 | 4 votes |
/** * Get classifier's class name by a short name * */ public static String getClassifierClassName(String classifierName) { String className = ""; switch (classifierName) { case "SGD": className = SGD.class.toString(); break; case "SGDText": className = SGDText.class.toString(); break; case "J48": className = J48.class.toString(); break; case "PART": className = PART.class.toString(); break; case "NaiveBayes": className = NaiveBayes.class.toString(); break; case "NBUpdateable": className = NaiveBayesUpdateable.class.toString(); break; case "AdaBoostM1": className = AdaBoostM1.class.toString(); break; case "LogitBoost": className = LogitBoost.class.toString(); break; case "Bagging": className = Bagging.class.toString(); break; case "Stacking": className = Stacking.class.toString(); break; case "AdditiveRegression": className = AdditiveRegression.class.toString(); break; case "Apriori": className = Apriori.class.toString(); break; default: className = SGD.class.toString(); } className = className.substring(6); return className; }
Example #24
Source File: EnsembleProvider.java From AILibs with GNU Affero General Public License v3.0 | 4 votes |
/** * Initializes the HIVE COTE ensemble consisting of 7 classifiers using a * majority voting strategy as described in J. Lines, S. Taylor and A. Bagnall, * "HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based * Ensembles for Time Series Classification," 2016 IEEE 16th International * Conference on Data Mining (ICDM), Barcelona, 2016, pp. 1041-1046. doi: * 10.1109/ICDM.2016.0133. * * @param seed * Seed used within the classifiers and the majority confidence * voting scheme * @param numFolds * Number of folds used within the determination of the classifier * weights for the {@link MajorityConfidenceVote} * @return Returns the initialized (but untrained) HIVE COTE ensemble model. */ public static Classifier provideHIVECOTEEnsembleModel(final long seed) { Classifier[] classifier = new Classifier[7]; Vote voter = new MajorityConfidenceVote(5, seed); // SMO poly2 SMO smop = new SMO(); smop.turnChecksOff(); smop.setBuildCalibrationModels(true); PolyKernel kernel = new PolyKernel(); kernel.setExponent(2); smop.setKernel(kernel); smop.setRandomSeed((int)seed); classifier[0] = smop; // Random Forest RandomForest rf = new RandomForest(); rf.setSeed((int)seed); rf.setNumIterations(500); classifier[1] = rf; // Rotation forest RotationForest rotF = new RotationForest(); rotF.setSeed((int)seed); rotF.setNumIterations(100); classifier[2] = rotF; // NN IBk nn = new IBk(); classifier[3] = nn; // Naive Bayes NaiveBayes nb = new NaiveBayes(); classifier[4] = nb; // C45 J48 c45 = new J48(); c45.setSeed((int)seed); classifier[5] = c45; // SMO linear SMO smol = new SMO(); smol.turnChecksOff(); smol.setBuildCalibrationModels(true); PolyKernel linearKernel = new PolyKernel(); linearKernel.setExponent(1); smol.setKernel(linearKernel); classifier[6] = smol; voter.setClassifiers(classifier); return voter; }
Example #25
Source File: Clustering.java From java-ml-projects with Apache License 2.0 | 4 votes |
@Override public void start(Stage stage) throws Exception { loadData(); tree = new J48(); tree.buildClassifier(data); noClassificationChart = buildChart("No Classification (click to add new data)", buildSingleSeries()); clusteredChart = buildChart("Clustered", buildClusteredSeries()); realDataChart = buildChart("Real Data (+ Decision Tree classification for new data)", buildLabeledSeries()); noClassificationChart.setOnMouseClicked(e -> { Axis<Number> xAxis = noClassificationChart.getXAxis(); Axis<Number> yAxis = noClassificationChart.getYAxis(); Point2D mouseSceneCoords = new Point2D(e.getSceneX(), e.getSceneY()); double x = xAxis.sceneToLocal(mouseSceneCoords).getX(); double y = yAxis.sceneToLocal(mouseSceneCoords).getY(); Number xValue = xAxis.getValueForDisplay(x); Number yValue = yAxis.getValueForDisplay(y); reloadSeries(xValue, yValue); }); Label lblDecisionTreeTitle = new Label("Decision Tree generated for the Iris dataset:"); Text txtTree = new Text(tree.toString()); String graph = tree.graph(); SwingNode sw = new SwingNode(); SwingUtilities.invokeLater(() -> { TreeVisualizer treeVisualizer = new TreeVisualizer(null, graph, new PlaceNode2()); treeVisualizer.setPreferredSize(new Dimension(600, 500)); sw.setContent(treeVisualizer); }); Button btnRestore = new Button("Restore original data"); Button btnSwapColors = new Button("Swap clustered chart colors"); StackPane spTree = new StackPane(sw); spTree.setPrefWidth(300); spTree.setPrefHeight(350); VBox vbDecisionTree = new VBox(5, lblDecisionTreeTitle, new Separator(), spTree, new HBox(10, btnRestore, btnSwapColors)); btnRestore.setOnAction(e -> { loadData(); reloadSeries(); }); btnSwapColors.setOnAction(e -> swapClusteredChartSeriesColors()); lblDecisionTreeTitle.setTextFill(Color.DARKRED); lblDecisionTreeTitle.setFont(Font.font(Font.getDefault().getFamily(), FontWeight.BOLD, FontPosture.ITALIC, 16)); txtTree.setTranslateX(100); txtTree.setFont(Font.font(Font.getDefault().getFamily(), FontWeight.BOLD, FontPosture.ITALIC, 14)); txtTree.setLineSpacing(1); txtTree.setTextAlignment(TextAlignment.LEFT); vbDecisionTree.setTranslateY(20); vbDecisionTree.setTranslateX(20); GridPane gpRoot = new GridPane(); gpRoot.add(realDataChart, 0, 0); gpRoot.add(clusteredChart, 1, 0); gpRoot.add(noClassificationChart, 0, 1); gpRoot.add(vbDecisionTree, 1, 1); stage.setScene(new Scene(gpRoot)); stage.setTitle("Íris dataset clustering and visualization"); stage.show(); }
Example #26
Source File: ModelEvaluation.java From Hands-On-Artificial-Intelligence-with-Java-for-Beginners with MIT License | 4 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { DataSource src = new DataSource("/Users/admin/Documents/NetBeansProjects/ModelEvaluation/segment-challenge.arff"); Instances dt = src.getDataSet(); dt.setClassIndex(dt.numAttributes()- 1); String[] options = new String[4]; options[0] = "-C"; options[1] = "0.1"; options[2] = "-M"; options[3] = "2"; J48 mytree = new J48(); mytree.setOptions(options); mytree.buildClassifier(dt); Evaluation eval = new Evaluation(dt); Random rand = new Random(1); DataSource src1 = new DataSource("/Users/admin/Documents/NetBeansProjects/ModelEvaluation/segment-test.arff"); Instances tdt = src1.getDataSet(); tdt.setClassIndex(tdt.numAttributes() - 1); eval.evaluateModel(mytree, tdt); System.out.println(eval.toSummaryString("Evaluation results:\n", false)); System.out.println("Correct % = " + eval.pctCorrect()); System.out.println("Incorrect % = " + eval.pctIncorrect()); System.out.println("kappa = " + eval.kappa()); System.out.println("MAE = " + eval.meanAbsoluteError()); System.out.println("RMSE = " + eval.rootMeanSquaredError()); System.out.println("RAE = " + eval.relativeAbsoluteError()); System.out.println("Precision = " + eval.precision(1)); System.out.println("Recall = " + eval.recall(1)); System.out.println("fMeasure = " + eval.fMeasure(1)); System.out.println(eval.toMatrixString("=== Overall Confusion Matrix ===")); } catch (Exception e) { System.out.println("Error!!!!\n" + e.getMessage()); } }
Example #27
Source File: CAWPE.java From tsml with GNU General Public License v3.0 | 4 votes |
/** * Comps: NN, SVML, SVMQ, C4.5, NB, RotF, RandF, BN, * Weight: TrainAcc * Vote: MajorityVote * * As used originally in ST_HESCA, COTE. * NOTE the original also contained Bayes Net (BN). We have removed it because the classifier crashes * unpredictably when discretising features (due to lack of variance in the feature, but not easily detected and * dealt with * */ public final void setupOriginalHESCASettings() { this.ensembleName = "HESCA"; this.weightingScheme = new TrainAcc(); this.votingScheme = new MajorityVote(); CrossValidationEvaluator cv = new CrossValidationEvaluator(seed, false, false, false, false); cv.setNumFolds(10); this.trainEstimator = cv; int numClassifiers=7; Classifier[] classifiers = new Classifier[numClassifiers]; String[] classifierNames = new String[numClassifiers]; kNN k=new kNN(100); k.setCrossValidate(true); k.normalise(false); k.setDistanceFunction(new EuclideanDistance()); classifiers[0] = k; classifierNames[0] = "NN"; classifiers[1] = new NaiveBayes(); classifierNames[1] = "NB"; classifiers[2] = new J48(); classifierNames[2] = "C45"; SMO svml = new SMO(); svml.turnChecksOff(); PolyKernel kl = new PolyKernel(); kl.setExponent(1); svml.setKernel(kl); svml.setRandomSeed(seed); classifiers[3] = svml; classifierNames[3] = "SVML"; SMO svmq =new SMO(); //Assumes no missing, all real valued and a discrete class variable svmq.turnChecksOff(); PolyKernel kq = new PolyKernel(); kq.setExponent(2); svmq.setKernel(kq); svmq.setRandomSeed(seed); classifiers[4] =svmq; classifierNames[4] = "SVMQ"; RandomForest r=new RandomForest(); r.setNumTrees(500); r.setSeed(seed); classifiers[5] = r; classifierNames[5] = "RandF"; RotationForest rf=new RotationForest(); rf.setNumIterations(50); rf.setSeed(seed); classifiers[6] = rf; classifierNames[6] = "RotF"; // classifiers[7] = new BayesNet(); // classifierNames[7] = "bayesNet"; setClassifiers(classifiers, classifierNames, null); }
Example #28
Source File: CAWPE.java From tsml with GNU General Public License v3.0 | 4 votes |
/** * Uses the 'basic UCI' set up: * Comps: SVML, MLP, NN, Logistic, C4.5 * Weight: TrainAcc(4) (train accuracies to the power 4) * Vote: MajorityConfidence (summing probability distributions) */ @Override //Abstract Ensemble public final void setupDefaultEnsembleSettings() { this.ensembleName = "CAWPE"; this.weightingScheme = new TrainAcc(4); this.votingScheme = new MajorityConfidence(); this.transform = null; CrossValidationEvaluator cv = new CrossValidationEvaluator(seed, false, false, false, false); cv.setNumFolds(10); this.trainEstimator = cv; Classifier[] classifiers = new Classifier[5]; String[] classifierNames = new String[5]; SMO smo = new SMO(); smo.turnChecksOff(); smo.setBuildLogisticModels(true); PolyKernel kl = new PolyKernel(); kl.setExponent(1); smo.setKernel(kl); smo.setRandomSeed(seed); classifiers[0] = smo; classifierNames[0] = "SVML"; kNN k=new kNN(100); k.setCrossValidate(true); k.normalise(false); k.setDistanceFunction(new EuclideanDistance()); classifiers[1] = k; classifierNames[1] = "NN"; classifiers[2] = new J48(); classifierNames[2] = "C4.5"; classifiers[3] = new Logistic(); classifierNames[3] = "Logistic"; classifiers[4] = new MultilayerPerceptron(); classifierNames[4] = "MLP"; setClassifiers(classifiers, classifierNames, null); }
Example #29
Source File: PartitionMembership.java From tsml with GNU General Public License v3.0 | 3 votes |
/** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -W <name of partition generator> * Full name of partition generator to use, e.g.: * weka.classifiers.trees.J48 * Additional options after the '--'. * (default: weka.classifiers.trees.J48)</pre> * <!-- options-end --> * * Options after the -- are passed on to the clusterer. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String generatorString = Utils.getOption('W', options); if (generatorString.length() == 0) { generatorString = J48.class.getName(); } setPartitionGenerator((PartitionGenerator)Utils. forName(PartitionGenerator.class, generatorString, Utils.partitionOptions(options))); Utils.checkForRemainingOptions(options); }