burlap.domain.singleagent.gridworld.state.GridAgent Java Examples
The following examples show how to use
burlap.domain.singleagent.gridworld.state.GridAgent.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: GridWorldDQN.java From burlap_caffe with Apache License 2.0 | 6 votes |
public GridWorldDQN(String solverFile, double gamma) { //create the domain gwdg = new GridWorldDomain(11, 11); gwdg.setMapToFourRooms(); rf = new UniformCostRF(); tf = new SinglePFTF(PropositionalFunction.findPF(gwdg.generatePfs(), GridWorldDomain.PF_AT_LOCATION)); gwdg.setRf(rf); gwdg.setTf(tf); domain = gwdg.generateDomain(); goalCondition = new TFGoalCondition(tf); //set up the initial state of the task initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); //set up the state hashing system for tabular algorithms hashingFactory = new SimpleHashableStateFactory(); //set up the environment for learners algorithms env = new SimulatedEnvironment(domain, initialState); dqn = new DQN(solverFile, actionSet, new NNGridStateConverter(), gamma); }
Example #2
Source File: IRLExample.java From burlap_examples with MIT License | 6 votes |
/** * Creates a grid world state with the agent in (0,0) and various different grid cell types scattered about. * @return a grid world state with the agent in (0,0) and various different grid cell types scattered about. */ protected State basicState(){ GridWorldState s = new GridWorldState( new GridAgent(0, 0), new GridLocation(0, 0, 1, "loc0"), new GridLocation(0, 4, 2, "loc1"), new GridLocation(4, 4, 3, "loc2"), new GridLocation(4, 0, 4, "loc3"), new GridLocation(1, 0, 0, "loc4"), new GridLocation(1, 2, 0, "loc5"), new GridLocation(1, 4, 0, "loc6"), new GridLocation(3, 1, 0, "loc7"), new GridLocation(3, 3, 0, "loc8") ); return s; }
Example #3
Source File: BasicBehavior.java From burlap_examples with MIT License | 6 votes |
public BasicBehavior(){ gwdg = new GridWorldDomain(11, 11); gwdg.setMapToFourRooms(); tf = new GridWorldTerminalFunction(10, 10); gwdg.setTf(tf); goalCondition = new TFGoalCondition(tf); domain = gwdg.generateDomain(); initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); hashingFactory = new SimpleHashableStateFactory(); env = new SimulatedEnvironment(domain, initialState); // VisualActionObserver observer = new VisualActionObserver(domain, GridWorldVisualizer.getVisualizer(gwdg.getMap())); // observer.initGUI(); // env.addObservers(observer); }
Example #4
Source File: HelloGridWorld.java From burlap_examples with MIT License | 6 votes |
public static void main(String[] args) { GridWorldDomain gw = new GridWorldDomain(11,11); //11x11 grid world gw.setMapToFourRooms(); //four rooms layout gw.setProbSucceedTransitionDynamics(0.8); //stochastic transitions with 0.8 success rate SADomain domain = gw.generateDomain(); //generate the grid world domain //setup initial state State s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); //create visualizer and explorer Visualizer v = GridWorldVisualizer.getVisualizer(gw.getMap()); VisualExplorer exp = new VisualExplorer(domain, v, s); //set control keys to use w-s-a-d exp.addKeyAction("w", GridWorldDomain.ACTION_NORTH, ""); exp.addKeyAction("s", GridWorldDomain.ACTION_SOUTH, ""); exp.addKeyAction("a", GridWorldDomain.ACTION_WEST, ""); exp.addKeyAction("d", GridWorldDomain.ACTION_EAST, ""); exp.initGUI(); }
Example #5
Source File: GridWorldDomain.java From burlap with Apache License 2.0 | 6 votes |
/** * Attempts to move the agent into the given position, taking into account walls and blocks * @param s the current state * @param xd the attempted new X position of the agent * @param yd the attempted new Y position of the agent * @return input state s, after modification */ protected State move(State s, int xd, int yd){ GridWorldState gws = (GridWorldState)s; int ax = gws.agent.x; int ay = gws.agent.y; int nx = ax+xd; int ny = ay+yd; //hit wall, so do not change position if(nx < 0 || nx >= map.length || ny < 0 || ny >= map[0].length || map[nx][ny] == 1 || (xd > 0 && (map[ax][ay] == 3 || map[ax][ay] == 4)) || (xd < 0 && (map[nx][ny] == 3 || map[nx][ny] == 4)) || (yd > 0 && (map[ax][ay] == 2 || map[ax][ay] == 4)) || (yd < 0 && (map[nx][ny] == 2 || map[nx][ny] == 4)) ){ nx = ax; ny = ay; } GridAgent nagent = gws.touchAgent(); nagent.x = nx; nagent.y = ny; return s; }
Example #6
Source File: VITutorial.java From burlap_examples with MIT License | 5 votes |
public static void main(String [] args){ GridWorldDomain gwd = new GridWorldDomain(11, 11); gwd.setTf(new GridWorldTerminalFunction(10, 10)); gwd.setMapToFourRooms(); //only go in intended directon 80% of the time gwd.setProbSucceedTransitionDynamics(0.8); SADomain domain = gwd.generateDomain(); //get initial state with agent in 0,0 State s = new GridWorldState(new GridAgent(0, 0)); //setup vi with 0.99 discount factor, a value //function initialization that initializes all states to value 0, and which will //run for 30 iterations over the state space VITutorial vi = new VITutorial(domain, 0.99, new SimpleHashableStateFactory(), new ConstantValueFunction(0.0), 30); //run planning from our initial state Policy p = vi.planFromState(s); //evaluate the policy with one roll out visualize the trajectory Episode ea = PolicyUtils.rollout(p, s, domain.getModel()); Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap()); new EpisodeSequenceVisualizer(v, domain, Arrays.asList(ea)); }
Example #7
Source File: QLTutorial.java From burlap_examples with MIT License | 5 votes |
public static void main(String[] args) { GridWorldDomain gwd = new GridWorldDomain(11, 11); gwd.setMapToFourRooms(); gwd.setProbSucceedTransitionDynamics(0.8); gwd.setTf(new GridWorldTerminalFunction(10, 10)); SADomain domain = gwd.generateDomain(); //get initial state with agent in 0,0 State s = new GridWorldState(new GridAgent(0, 0)); //create environment SimulatedEnvironment env = new SimulatedEnvironment(domain, s); //create Q-learning QLTutorial agent = new QLTutorial(domain, 0.99, new SimpleHashableStateFactory(), new ConstantValueFunction(), 0.1, 0.1); //run Q-learning and store results in a list List<Episode> episodes = new ArrayList<Episode>(1000); for(int i = 0; i < 1000; i++){ episodes.add(agent.runLearningEpisode(env)); env.resetEnvironment(); } Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap()); new EpisodeSequenceVisualizer(v, domain, episodes); }
Example #8
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Test public void testBFS() { GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0")); DeterministicPlanner planner = new BFS(this.domain, this.goalCondition, this.hashingFactory); planner.planFromState(initialState); Policy p = new SDPlannerPolicy(planner); Episode analysis = rollout(p, initialState, domain.getModel()); this.evaluateEpisode(analysis, true); }
Example #9
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Test public void testDFS() { GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0")); DeterministicPlanner planner = new DFS(this.domain, this.goalCondition, this.hashingFactory, -1 , true); planner.planFromState(initialState); Policy p = new SDPlannerPolicy(planner); Episode analysis = rollout(p, initialState, domain.getModel()); this.evaluateEpisode(analysis); }
Example #10
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Test public void testAStar() { GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0")); Heuristic mdistHeuristic = new Heuristic() { @Override public double h(State s) { GridAgent agent = ((GridWorldState)s).agent; GridLocation location = ((GridWorldState)s).locations.get(0); //get agent position int ax = agent.x; int ay = agent.y; //get location position int lx = location.x; int ly = location.y; //compute Manhattan distance double mdist = Math.abs(ax-lx) + Math.abs(ay-ly); return -mdist; } }; //provide A* the heuristic as well as the reward function so that it can keep //track of the actual cost DeterministicPlanner planner = new AStar(domain, goalCondition, hashingFactory, mdistHeuristic); planner.planFromState(initialState); Policy p = new SDPlannerPolicy(planner); Episode analysis = PolicyUtils.rollout(p, initialState, domain.getModel()); this.evaluateEpisode(analysis, true); }
Example #11
Source File: TestHashing.java From burlap with Apache License 2.0 | 5 votes |
public State generateLargeGW(SADomain domain, int width) { GridWorldState state = new GridWorldState(new GridAgent()); for (int i = 0; i < width; i++) { state.locations.add(new GridLocation(i, width - 1 - i, "loc"+i)); } return state; }
Example #12
Source File: BasicBehavior.java From burlap_examples with MIT License | 4 votes |
public void AStarExample(String outputPath){ Heuristic mdistHeuristic = new Heuristic() { public double h(State s) { GridAgent a = ((GridWorldState)s).agent; double mdist = Math.abs(a.x-10) + Math.abs(a.y-10); return -mdist; } }; DeterministicPlanner planner = new AStar(domain, goalCondition, hashingFactory, mdistHeuristic); Policy p = planner.planFromState(initialState); PolicyUtils.rollout(p, initialState, domain.getModel()).write(outputPath + "astar"); }
Example #13
Source File: Episode.java From burlap with Apache License 2.0 | 4 votes |
public static void main(String[] args) { GridWorldDomain gwd = new GridWorldDomain(11, 11); SADomain domain = gwd.generateDomain(); State s = new GridWorldState(new GridAgent(1, 3)); Policy p = new RandomPolicy(domain); Episode ea = PolicyUtils.rollout(p, s, domain.getModel(), 30); String yamlOut = ea.serialize(); System.out.println(yamlOut); System.out.println("\n\n"); Episode read = Episode.parseEpisode(yamlOut); System.out.println(read.actionString()); System.out.println(read.state(0).toString()); System.out.println(read.actionSequence.size()); System.out.println(read.stateSequence.size()); }
Example #14
Source File: GridWorldDomain.java From burlap with Apache License 2.0 | 4 votes |
/** * Creates a visual explorer or terminal explorer. By default a visual explorer is presented; use the "t" argument * to create terminal explorer. Will create a 4 rooms grid world with the agent in lower left corner and a location in * the upper right. Use w-a-s-d to move. * @param args command line args */ public static void main(String[] args) { GridWorldDomain gwdg = new GridWorldDomain(11, 11); gwdg.setMapToFourRooms(); //gwdg.setProbSucceedTransitionDynamics(0.75); SADomain d = gwdg.generateDomain(); GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); int expMode = 1; if(args.length > 0){ if(args[0].equals("v")){ expMode = 1; } else if(args[0].equals("t")){ expMode = 0; } } if(expMode == 0){ EnvironmentShell shell = new EnvironmentShell(d, s); shell.start(); } else if(expMode == 1){ Visualizer v = GridWorldVisualizer.getVisualizer(gwdg.getMap()); VisualExplorer exp = new VisualExplorer(d, v, s); //use w-s-a-d-x exp.addKeyAction("w", ACTION_NORTH, ""); exp.addKeyAction("s", ACTION_SOUTH, ""); exp.addKeyAction("a", ACTION_WEST, ""); exp.addKeyAction("d", ACTION_EAST, ""); exp.initGUI(); } }
Example #15
Source File: TestGridWorld.java From burlap with Apache License 2.0 | 4 votes |
public State generateState() { GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "location0")); return s; }
Example #16
Source File: PlotTest.java From burlap_examples with MIT License | 2 votes |
public static void main(String [] args){ GridWorldDomain gw = new GridWorldDomain(11,11); //11x11 grid world gw.setMapToFourRooms(); //four rooms layout gw.setProbSucceedTransitionDynamics(0.8); //stochastic transitions with 0.8 success rate //ends when the agent reaches a location final TerminalFunction tf = new SinglePFTF( PropositionalFunction.findPF(gw.generatePfs(), GridWorldDomain.PF_AT_LOCATION)); //reward function definition final RewardFunction rf = new GoalBasedRF(new TFGoalCondition(tf), 5., -0.1); gw.setTf(tf); gw.setRf(rf); final OOSADomain domain = gw.generateDomain(); //generate the grid world domain //setup initial state GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); //initial state generator final ConstantStateGenerator sg = new ConstantStateGenerator(s); //set up the state hashing system for looking up states final SimpleHashableStateFactory hashingFactory = new SimpleHashableStateFactory(); /** * Create factory for Q-learning agent */ LearningAgentFactory qLearningFactory = new LearningAgentFactory() { public String getAgentName() { return "Q-learning"; } public LearningAgent generateAgent() { return new QLearning(domain, 0.99, hashingFactory, 0.3, 0.1); } }; //define learning environment SimulatedEnvironment env = new SimulatedEnvironment(domain, sg); //define experiment LearningAlgorithmExperimenter exp = new LearningAlgorithmExperimenter(env, 10, 100, qLearningFactory); exp.setUpPlottingConfiguration(500, 250, 2, 1000, TrialMode.MOST_RECENT_AND_AVERAGE, PerformanceMetric.CUMULATIVE_STEPS_PER_EPISODE, PerformanceMetric.AVERAGE_EPISODE_REWARD); //start experiment exp.startExperiment(); }