org.neuroph.core.events.LearningEvent Java Examples
The following examples show how to use
org.neuroph.core.events.LearningEvent.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: KohonenLearning.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Override public void learn(DataSet trainingSet) { for (int phase = 0; phase < 2; phase++) { for (int k = 0; k < iterations[phase]; k++) { Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { DataSetRow trainingSetRow = iterator.next(); learnPattern(trainingSetRow, nR[phase]); } // while currentIteration = k; fireLearningEvent(new LearningEvent(this, LearningEvent.Type.EPOCH_ENDED)); if (isStopped()) return; } // for k learningRate = learningRate * 0.5; } // for phase }
Example #2
Source File: BreastCancerSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #3
Source File: IonosphereSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #4
Source File: IonosphereSample2.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #5
Source File: MNISTExample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); LOG.info("Current iteration: " + bp.getCurrentIteration()); LOG.info("Error: " + bp.getTotalNetworkError()); LOG.info("Calculation time: " + (System.currentTimeMillis() - start) / 1000.0); // neuralNetwork.save(bp.getCurrentIteration() + "CNN_MNIST" + bp.getCurrentIteration() + ".nnet"); start = System.currentTimeMillis(); // NeuralNetworkEvaluationService.completeEvaluation(neuralNetwork, testSet); }
Example #6
Source File: DiabetesSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #7
Source File: CnnMNIST.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); LOG.info("Epoch no#: [{}]. Error [{}]", bp.getCurrentIteration(), bp.getTotalNetworkError()); LOG.info("Epoch execution time: {} sec", (System.currentTimeMillis() - start) / 1000.0); // neuralNetwork.save(bp.getCurrentIteration() + "_MNIST_CNN-MIC.nnet"); start = System.currentTimeMillis(); // if (bp.getCurrentIteration() % 5 == 0) // Evaluation.runFullEvaluation(neuralNetwork, testSet); }
Example #8
Source File: GermanCreditDataSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #9
Source File: BrestCancerSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #10
Source File: TrainNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #11
Source File: Cifar10Example.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); LOG.info("Epoch no#: [{}]. Error [{}]", bp.getCurrentIteration(), bp.getTotalNetworkError()); LOG.info("Epoch execution time: {} sec", (System.currentTimeMillis() - start) / 1000.0); // neuralNetwork.save(bp.getCurrentIteration() + "_MNIST_CNN-MIC.nnet"); start = System.currentTimeMillis(); // if (bp.getCurrentIteration() % 5 == 0) // Evaluation.runFullEvaluation(neuralNetwork, testSet); }
Example #12
Source File: DigitsRecognition.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String args[]) { //create training set from Data.DIGITS DataSet dataSet = generateTrainingSet(); int inputCount = DigitData.CHAR_HEIGHT * DigitData.CHAR_WIDTH; int outputCount = DigitData.DIGITS.length; int hiddenNeurons = 19; //create neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputCount, hiddenNeurons, outputCount); //get backpropagation learning rule from network BackPropagation learningRule = neuralNet.getLearningRule(); learningRule.setLearningRate(0.5); learningRule.setMaxError(0.001); learningRule.setMaxIterations(5000); //add learning listener in order to print out training info learningRule.addListener(new LearningEventListener() { @Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { System.out.println(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations"); System.out.println("With total error " + bp.getTotalNetworkError() + '\n'); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } } }); //train neural network neuralNet.learn(dataSet); //train the network with training set testNeuralNetwork(neuralNet, dataSet); }
Example #13
Source File: IterativeLearning.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Runs one learning iteration with the specified training set and fires * event to notify observers. This method does the the doLearningEpoch() and in addtion * notifes observrs when iteration is done. * * @param trainingSet training set to learn */ public void doOneLearningIteration(DataSet trainingSet) { beforeEpoch(); doLearningEpoch(trainingSet); afterEpoch(); // notify listeners fireLearningEvent(new LearningEvent(this, LearningEvent.Type.LEARNING_STOPPED)); }
Example #14
Source File: IterativeLearning.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public final void learn(DataSet trainingSet) { setTrainingSet(trainingSet); // set this field here su subclasses can access it onStart(); while (!isStopped()) { beforeEpoch(); doLearningEpoch(trainingSet); this.currentIteration++; afterEpoch(); // now check if stop condition is satisfied if (hasReachedStopCondition()) { stopLearning(); } else if (!iterationsLimited && (currentIteration == Integer.MAX_VALUE)) { // if counter has reached max value and iteration number is not limited restart iteration counter this.currentIteration = 1; } // notify listeners that epoch has ended fireLearningEvent(new LearningEvent(this, LearningEvent.Type.EPOCH_ENDED)); // Thread safe pause when learning is paused if (this.pausedLearning) { synchronized (this) { while (this.pausedLearning) { try { this.wait(); } catch (Exception e) { } } } } } onStop(); fireLearningEvent(new LearningEvent(this, LearningEvent.Type.LEARNING_STOPPED)); }
Example #15
Source File: RBFClassificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { LMS lr = (LMS) event.getSource(); System.out.println(lr.getCurrentIteration() + ". iteration | Total network error: " + lr.getTotalNetworkError()); }
Example #16
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #17
Source File: SegmentChallengeSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training and test set from file..."); String dataSetFile = "data_sets/segment challenge.txt"; String testSetFileName = "data_sets/segment test.txt"; int inputsCount = 19; int outputsCount = 7; //Create training data set from file DataSet trainingSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); System.out.println("Training set size: " + trainingSet.getRows().size()); trainingSet.shuffle(); //Normalizing training data set Normalizer normalizer = new MaxNormalizer(trainingSet); normalizer.normalize(trainingSet); //Create test data set from file DataSet testSet = DataSet.createFromFile(testSetFileName, inputsCount, outputsCount, ","); System.out.println("Test set size: " + testSet.getRows().size()); System.out.println("--------------------------------------------------"); testSet.shuffle(); //Normalizing training data set normalizer.normalize(testSet); System.out.println("Creating neural network..."); //Create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 17, 10, outputsCount); //attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event) -> { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }); learningRule.setLearningRate(0.01); learningRule.setMaxError(0.001); learningRule.setMaxIterations(12000); System.out.println("Training network..."); //train the network with training set neuralNet.learn(trainingSet); System.out.println("Testing network...\n\n"); testNeuralNetwork(neuralNet, testSet); System.out.println("Done."); System.out.println("**************************************************"); // } }
Example #18
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #19
Source File: Banknote.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #20
Source File: LensesClassificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #21
Source File: CarEvaluationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #22
Source File: SwedishAutoInsurance.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { LMS bp = (LMS) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #23
Source File: PredictingPokerHandsSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #24
Source File: Abalone.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #25
Source File: Sonar.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #26
Source File: WineQualityClassification.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #27
Source File: WheatSeeds.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #28
Source File: Ionosphere.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #29
Source File: PimaIndiansDiabetes.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #30
Source File: BatchImageTrainer.java From FakeImageDetection with GNU General Public License v3.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); listener.batchImageTrainingUpdate(bp.getCurrentIteration(), bp.getTotalNetworkError()); }