org.neuroph.util.TransferFunctionType Java Examples
The following examples show how to use
org.neuroph.util.TransferFunctionType.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: MomentumBackPropagationTest.java From NeurophFramework with Apache License 2.0 | 7 votes |
@Test public void testXorMSE() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); MeanSquaredError mse = new MeanSquaredError(); for (DataSetRow testSetRow : xorDataSet.getRows()) { myMlPerceptron.setInput(testSetRow.getInput()); myMlPerceptron.calculate(); double[] networkOutput = myMlPerceptron.getOutput(); mse.addPatternError(networkOutput, testSetRow.getDesiredOutput()); } assertTrue(mse.getTotalError() < maxError); }
Example #2
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 7 votes |
@Test public void testXorMSE() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); MeanSquaredError mse = new MeanSquaredError(); for (DataSetRow testSetRow : xorDataSet.getRows()) { myMlPerceptron.setInput(testSetRow.getInput()); myMlPerceptron.calculate(); double[] networkOutput = myMlPerceptron.getOutput(); mse.addPatternError(networkOutput, testSetRow.getDesiredOutput()); } assertTrue(mse.getTotalError() < maxError); }
Example #3
Source File: RunExample.java From NeurophFramework with Apache License 2.0 | 7 votes |
public static void main(String[] args) { AutoTrainer trainer = new AutoTrainer() .setMaxError(0.01, 0.03,0.01) // isto ranhe? .setMaxIterations(20000) .setTransferFunction(TransferFunctionType.TANH) .setHiddenNeurons(new Range(10, 20), 2) // kako dodati jos slojeva neurona? .setLearningRate(new Range(0.3, 0.6), 0.3) .repeat(3) .setTrainTestSplit(70); DataSet dataSet = DataSet.createFromFile(FILEPATH, 4, 3, "\t", true); trainer.train(dataSet); List<TrainingResult> results = trainer.getResults(); try { Util.saveToCSV(trainer, results); } catch (FileNotFoundException ex) { System.out.println("Error writing csv file"); } System.out.println("Main done!"); }
Example #4
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void run() throws InterruptedException, ExecutionException { System.out.println("Creating training set..."); // get path to training set String dataSetFile = "data_sets/iris_data_normalised.txt"; int inputsCount = 4; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // dataSet.setColumnNames(new String[]{"sepal.length", "sepal.width", "petal.length", "petal.width", "setosa", "versicolor", "virginica"}); dataSet.setColumnNames(new String[]{"setosa", "versicolor", "virginica"}); dataSet.shuffle(); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 5, outputsCount); String[] classLabels = new String[]{"setosa", "versicolor", "virginica"}; neuralNet.setOutputLabels(classLabels); KFoldCrossValidation crossVal = new KFoldCrossValidation(neuralNet, dataSet, 5); EvaluationResult totalResult= crossVal.run(); List<FoldResult> cflist= crossVal.getResultsByFolds(); }
Example #5
Source File: ART1Network.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * * @param vigilance * @param L * @param neuronsInLayers */ public ART1Network (double vigilance, int L, int ... neuronsInLayers) { // init neuron settings NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("useBias", true); neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID); neuronProperties.setProperty("inputFunction", WeightedSum.class); // Makes a vector, which gives as an array of numbers of neurons in each layer List<Integer> neuronsInLayersVector = new ArrayList<>(); for(int i=0; i<neuronsInLayers.length; i++) { neuronsInLayersVector.add(new Integer(neuronsInLayers[i])); } this.createNetwork(neuronsInLayersVector, neuronProperties, vigilance, L); }
Example #6
Source File: TestMatrixMLP.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Create and run MLP with XOR training set */ public static void main(String[] args) { // create training set (logical XOR function) DataSet trainingSet = new DataSet(2, 1); trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); MultiLayerPerceptron nnet = new MultiLayerPerceptron( TransferFunctionType.TANH ,2, 3, 1); MatrixMultiLayerPerceptron mnet = new MatrixMultiLayerPerceptron(nnet); System.out.println("Training network..."); mnet.learn(trainingSet); System.out.println("Done training network."); }
Example #7
Source File: TestTimeSeries.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void train() { // get the path to file with data String inputFileName = "C:\\timeseries\\BSW15"; // create MultiLayerPerceptron neural network neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, 5, 10, 1); MomentumBackpropagation learningRule = (MomentumBackpropagation)neuralNet.getLearningRule(); learningRule.setLearningRate(0.2); learningRule.setMomentum(0.5); // learningRule.addObserver(this); learningRule.addListener(this); // create training set from file trainingSet = DataSet.createFromFile(inputFileName, 5, 1, "\t", false); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Done training."); }
Example #8
Source File: SunSpots.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void run() { // uncomment the following line to use regular Neuroph (non-flat) processing //Neuroph.getInstance().setFlattenNetworks(false); // create neural network NeuralNetwork network = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, WINDOW_SIZE, 10, 1); // normalize training data normalizeSunspots(0.1, 0.9); network.getLearningRule().addListener(this); // create training set DataSet trainingSet = generateTrainingData(); network.learn(trainingSet); predict(network); Neuroph.getInstance().shutdown(); }
Example #9
Source File: MultiLayerPerceptron.java From NeurophFramework with Apache License 2.0 | 5 votes |
public MultiLayerPerceptron(TransferFunctionType transferFunctionType, int... neuronsInLayers) { // init neuron settings NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("useBias", true); neuronProperties.setProperty("transferFunction", transferFunctionType); neuronProperties.setProperty("inputFunction", WeightedSum.class); List<Integer> neuronsInLayersVector = new ArrayList<>(); for (int i = 0; i < neuronsInLayers.length; i++) { neuronsInLayersVector.add(Integer.valueOf(neuronsInLayers[i])); } this.createNetwork(neuronsInLayersVector, neuronProperties); }
Example #10
Source File: ART1Network.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** Creates new ART1 Network, with specified number of neurons in layers * and a vigilance parameter * * @param neuronsInLayers * collection of neuron number in layers * @param vigilance * @param L * */ public ART1Network (List<Integer> neuronsInLayers, double vigilance, int L ) { NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("useBias", true); neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID); neuronProperties.setProperty("inputFunction", new WeightedSum()); this.createNetwork(neuronsInLayers, neuronProperties, vigilance, L); }
Example #11
Source File: MultiLayerPerceptron.java From NeurophFramework with Apache License 2.0 | 5 votes |
public MultiLayerPerceptron(List<Integer> neuronsInLayers, TransferFunctionType transferFunctionType) { // init neuron settings NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("useBias", true); neuronProperties.setProperty("transferFunction", transferFunctionType); this.createNetwork(neuronsInLayers, neuronProperties); }
Example #12
Source File: MomentumBackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testXorMaxError() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); assertTrue(instance.getTotalNetworkError() < maxError); }
Example #13
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testXorMaxError() { MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); myMlPerceptron.setLearningRule(instance); myMlPerceptron.learn(xorDataSet); assertTrue(instance.getTotalNetworkError() < maxError); }
Example #14
Source File: SgnTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Test of getProperties method, of class Sgn. */ @Test public void testGetProperties() { Properties expResult = new Properties(); expResult.setProperty("transferFunction", TransferFunctionType.SGN.toString()); Properties result = instance.getProperties(); assertEquals(expResult, result); }
Example #15
Source File: BackpropBenchmarksExample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws IOException { BackPropBenchmarks bpb = new BackPropBenchmarks(); bpb.setNoOfRepetitions(3); MultiLayerPerceptron mlp = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 4, 7, 3); DataSet trainingSet = DataSet.createFromFile("iris_data_normalised.txt", 4, 3, ","); TrainingSettingsGenerator generator = new TrainingSettingsGenerator(); Properties prop = new Properties(); prop.setProperty(BackpropagationSettings.MIN_LEARNING_RATE, "0.1"); prop.setProperty(BackpropagationSettings.MAX_LEARNING_RATE, "0.4"); prop.setProperty(BackpropagationSettings.LEARNING_RATE_STEP, "0.5"); prop.setProperty(BackpropagationSettings.MIN_HIDDEN_NEURONS, "9"); prop.setProperty(BackpropagationSettings.MAX_HIDDEN_NEURONS, "10"); prop.setProperty(BackpropagationSettings.HIDDEN_NEURONS_STEP, "1"); prop.setProperty(BackpropagationSettings.MOMENTUM, "0.5"); prop.setProperty(BackpropagationSettings.MAX_ERROR, "0.1"); prop.setProperty(BackpropagationSettings.MAX_ITERATIONS, "10000"); prop.setProperty(BackpropagationSettings.BATCH_MODE, "true"); generator.setSettings(prop); List<TrainingSettings> settingsCollection = generator.generateSettings(); List<Class<? extends AbstractTraining>> trainingTypeCollection = new ArrayList<>(); trainingTypeCollection.add(BackpropagationTraining.class); trainingTypeCollection.add(MomentumTraining.class); bpb.startBenchmark(trainingTypeCollection, settingsCollection, trainingSet, mlp); bpb.saveResults("C:\\Users\\Mladen\\Desktop\\test123"); }
Example #16
Source File: AbstractTraining.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Create instance of training with new neural network * * @param dataset * @param settings */ public AbstractTraining(DataSet dataset, TrainingSettings settings) { this.dataset = dataset; this.settings = settings; this.stats = new TrainingStatistics(); this.neuralNet = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, dataset.getInputSize(), settings.getHiddenNeurons(), dataset.getOutputSize()); }
Example #17
Source File: TestBinaryClass.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) { DataSet trainingSet = new DataSet(2, 1); trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, 2, 3, 1); neuralNet.learn(trainingSet); Evaluation.runFullEvaluation(neuralNet, trainingSet); }
Example #18
Source File: XorResilientPropagationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Runs this sample */ public void run() { // create training set (logical XOR function) DataSet trainingSet = new DataSet(2, 1); trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); // create multi layer perceptron MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); // set ResilientPropagation learning rule myMlPerceptron.setLearningRule(new ResilientPropagation()); LearningRule learningRule = myMlPerceptron.getLearningRule(); learningRule.addListener(this); // learn the training set System.out.println("Training neural network..."); myMlPerceptron.learn(trainingSet); int iterations = ((SupervisedLearning)myMlPerceptron.getLearningRule()).getCurrentIteration(); System.out.println("Learned in "+iterations+" iterations"); // test perceptron System.out.println("Testing trained neural network"); testNeuralNetwork(myMlPerceptron, trainingSet); }
Example #19
Source File: ImageRecognitionHelper.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates and returns new neural network for image recognition. * Assumes that all of the FractionRgbData objects in the given map have identical * length arrays in them so that the input layer of the neural network can be * created here. * * @param label neural network label * @param samplingResolution sampling resolution (image size) * @param imageLabels image labels * @param layersNeuronsCount neuron counts in hidden layers * @param transferFunctionType type of transfer function to use for neurons in network * @param colorMode color mode * @return */ public static NeuralNetwork createNewNeuralNetwork(String label, Dimension samplingResolution, ColorMode colorMode, List<String> imageLabels, List<Integer> layersNeuronsCount, TransferFunctionType transferFunctionType) { int numberOfInputNeurons; if ((colorMode == ColorMode.COLOR_RGB) || (colorMode == ColorMode.COLOR_HSL) ){ // for full color rgb or hsl numberOfInputNeurons = 3 * samplingResolution.getWidth() * samplingResolution.getHeight(); } else { // for black n white network numberOfInputNeurons = samplingResolution.getWidth() * samplingResolution.getHeight(); } int numberOfOuputNeurons = imageLabels.size(); layersNeuronsCount.add(0, numberOfInputNeurons); layersNeuronsCount.add(numberOfOuputNeurons); System.out.println("Neuron layer size counts vector = " + layersNeuronsCount); NeuralNetwork neuralNetwork = new MultiLayerPerceptron(layersNeuronsCount, transferFunctionType); neuralNetwork.setLabel(label); PluginBase imageRecognitionPlugin = new ImageRecognitionPlugin(samplingResolution, colorMode); neuralNetwork.addPlugin(imageRecognitionPlugin); assignLabelsToOutputNeurons(neuralNetwork, imageLabels); neuralNetwork.setLearningRule(new MomentumBackpropagation()); return neuralNetwork; }
Example #20
Source File: RGBImageRecognitionTrainingSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws IOException { // path to image directory String imageDir ="/home/zoran/Downloads/MihailoHSLTest/trening"; // image names - used for output neuron labels List<String> imageLabels = new ArrayList(); imageLabels.add("bird"); imageLabels.add("cat"); imageLabels.add("dog"); // create dataset Map<String,FractionRgbData> map = ImageRecognitionHelper.getFractionRgbDataForDirectory (new File(imageDir), new Dimension(20, 20)); DataSet dataSet = ImageRecognitionHelper.createRGBTrainingSet(imageLabels, map); // create neural network List <Integer> hiddenLayers = new ArrayList<>(); hiddenLayers.add(12); NeuralNetwork nnet = ImageRecognitionHelper.createNewNeuralNetwork("someNetworkName", new Dimension(20,20), ColorMode.COLOR_RGB, imageLabels, hiddenLayers, TransferFunctionType.SIGMOID); // set learning rule parameters MomentumBackpropagation mb = (MomentumBackpropagation)nnet.getLearningRule(); mb.setLearningRate(0.2); mb.setMaxError(0.9); mb.setMomentum(1); // traiin network System.out.println("NNet start learning..."); nnet.learn(dataSet); System.out.println("NNet learned"); }
Example #21
Source File: HSLImageRecognitionTrainingSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main (String [] args) throws IOException { // path to image directory String imageDir ="/home/zoran/Downloads/MihailoHSLTest/trening"; // image names - used for output neuron labels List<String> imageLabels = new ArrayList(); imageLabels.add("bird"); imageLabels.add("cat"); imageLabels.add("dog"); // create dataset Map<String,FractionHSLData> map = ImageRecognitionHelper.getFractionHSLDataForDirectory (new File(imageDir), new Dimension(20, 20)); DataSet dataSet = ImageRecognitionHelper.createHSLTrainingSet(imageLabels, map); // create neural network List <Integer> hiddenLayers = new ArrayList<>(); hiddenLayers.add(12); NeuralNetwork nnet = ImageRecognitionHelper.createNewNeuralNetwork("someNetworkName", new Dimension(20,20), ColorMode.COLOR_HSL, imageLabels, hiddenLayers, TransferFunctionType.SIGMOID); // set learning rule parameters MomentumBackpropagation mb = (MomentumBackpropagation)nnet.getLearningRule(); mb.setLearningRate(0.2); mb.setMaxError(0.9); mb.setMomentum(1); // traiin network System.out.println("NNet start learning..."); nnet.learn(dataSet); System.out.println("NNet learned"); }
Example #22
Source File: MLPNetworkMaker.java From FakeImageDetection with GNU General Public License v3.0 | 5 votes |
public MLPNetworkMaker(String networkLabel, Dimension samplingDimension, ColorMode mode, List<String> outputNeuronLabels, List<Integer> neuronCounts, TransferFunctionType type, String saveLocation) { this.networkLabel = networkLabel; this.samplingDimension = samplingDimension; this.mode = mode; this.outputNeuronLabels = outputNeuronLabels; this.neuronCounts = neuronCounts; this.type = type; this.saveLocation = saveLocation; }
Example #23
Source File: MultiLayerPerceptron.java From NeurophFramework with Apache License 2.0 | 5 votes |
public MultiLayerPerceptron(int... neuronsInLayers) { // init neuron settings NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("useBias", true); neuronProperties.setProperty("transferFunction", TransferFunctionType.SIGMOID); neuronProperties.setProperty("inputFunction", WeightedSum.class); List<Integer> neuronsInLayersVector = new ArrayList<>(); for (int i = 0; i < neuronsInLayers.length; i++) { neuronsInLayersVector.add(Integer.valueOf(neuronsInLayers[i])); } this.createNetwork(neuronsInLayersVector, neuronProperties); }
Example #24
Source File: UnsupervisedHebbianNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates an instance of Unsuervised Hebian net with specified number * of neurons in input layer and output layer, and transfer function * * @param inputNeuronsNum * number of neurons in input layer * @param outputNeuronsNum * number of neurons in output layer * @param transferFunctionType * transfer function type */ private void createNetwork(int inputNeuronsNum, int outputNeuronsNum, TransferFunctionType transferFunctionType) { // init neuron properties NeuronProperties neuronProperties = new NeuronProperties(); // neuronProperties.setProperty("bias", new Double(-Math // .abs(Math.random() - 0.5))); // Hebbian network cann not work // without bias neuronProperties.setProperty("transferFunction", transferFunctionType); neuronProperties.setProperty("transferFunction.slope", new Double(1)); // set network type code this.setNetworkType(NeuralNetworkType.UNSUPERVISED_HEBBIAN_NET); // createLayer input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum, neuronProperties); this.addLayer(inputLayer); // createLayer output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum, neuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set appropriate learning rule for this network this.setLearningRule(new UnsupervisedHebbianLearning()); //this.setLearningRule(new OjaLearning(this)); }
Example #25
Source File: Adaline.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates adaline network architecture with specified number of input neurons * * @param inputNeuronsCount * number of neurons in input layer */ private void createNetwork(int inputNeuronsCount) { // set network type code this.setNetworkType(NeuralNetworkType.ADALINE); // create input layer neuron settings for this network NeuronProperties inNeuronProperties = new NeuronProperties(); inNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); // createLayer input layer with specified number of neurons //Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, inNeuronProperties); Layer inputLayer = new InputLayer(inputNeuronsCount); inputLayer.addNeuron(new BiasNeuron()); // add bias neuron (always 1, and it will act as bias input for output neuron) this.addLayer(inputLayer); // create output layer neuron settings for this network NeuronProperties outNeuronProperties = new NeuronProperties(); outNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); // was RAMP // outNeuronProperties.setProperty("transferFunction.slope", new Double(1)); // outNeuronProperties.setProperty("transferFunction.yHigh", new Double(1)); // outNeuronProperties.setProperty("transferFunction.xHigh", new Double(1)); // outNeuronProperties.setProperty("transferFunction.yLow", new Double(-1)); // outNeuronProperties.setProperty("transferFunction.xLow", new Double(-1)); // createLayer output layer (only one neuron) Layer outputLayer = LayerFactory.createLayer(1, outNeuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for network NeuralNetworkFactory.setDefaultIO(this); // set LMS learning rule for this network this.setLearningRule(new LMS()); }
Example #26
Source File: CompetitiveNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates Competitive network architecture * * @param inputNeuronsCount * input neurons number * @param outputNeuronsCount * output neurons number * @param neuronProperties * neuron properties */ private void createNetwork(int inputNeuronsCount, int outputNeuronsCount) { // set network type this.setNetworkType(NeuralNetworkType.COMPETITIVE); // createLayer input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, new NeuronProperties()); this.addLayer(inputLayer); // createLayer properties for neurons in output layer NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("neuronType", CompetitiveNeuron.class); neuronProperties.setProperty("inputFunction", WeightedSum.class); neuronProperties.setProperty("transferFunction",TransferFunctionType.RAMP); // createLayer full connectivity in competitive layer CompetitiveLayer competitiveLayer = new CompetitiveLayer(outputNeuronsCount, neuronProperties); // add competitive layer to network this.addLayer(competitiveLayer); double competitiveWeight = -(1 / (double) outputNeuronsCount); // createLayer full connectivity within competitive layer ConnectionFactory.fullConnect(competitiveLayer, competitiveWeight, 1); // createLayer full connectivity from input to competitive layer ConnectionFactory.fullConnect(inputLayer, competitiveLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); this.setLearningRule(new CompetitiveLearning()); }
Example #27
Source File: Perceptron.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates perceptron architecture with specified number of neurons in input * and output layer, specified transfer function * * @param inputNeuronsCount * number of neurons in input layer * @param outputNeuronsCount * number of neurons in output layer * @param transferFunctionType * neuron transfer function type */ private void createNetwork(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType) { // set network type this.setNetworkType(NeuralNetworkType.PERCEPTRON); Layer inputLayer = new InputLayer(inputNeuronsCount); this.addLayer(inputLayer); NeuronProperties outputNeuronProperties = new NeuronProperties(); outputNeuronProperties.setProperty("neuronType", ThresholdNeuron.class); outputNeuronProperties.setProperty("thresh", new Double(Math.abs(Math.random()))); outputNeuronProperties.setProperty("transferFunction", transferFunctionType); // for sigmoid and tanh transfer functions set slope propery outputNeuronProperties.setProperty("transferFunction.slope", new Double(1)); // createLayer output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, outputNeuronProperties); this.addLayer(outputLayer); // create full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); this.setLearningRule(new BinaryDeltaRule()); // set appropriate learning rule for this network // if (transferFunctionType == TransferFunctionType.STEP) { // this.setLearningRule(new BinaryDeltaRule(this)); // } else if (transferFunctionType == TransferFunctionType.SIGMOID) { // this.setLearningRule(new SigmoidDeltaRule(this)); // } else if (transferFunctionType == TransferFunctionType.TANH) { // this.setLearningRule(new SigmoidDeltaRule(this)); // } else { // this.setLearningRule(new PerceptronLearning(this)); // } }
Example #28
Source File: BAM.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates an instance of BAM network with specified number of neurons * in input and output layers. * * @param inputNeuronsCount * number of neurons in input layer * @param outputNeuronsCount * number of neurons in output layer */ public BAM(int inputNeuronsCount, int outputNeuronsCount) { // init neuron settings for BAM network NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("neuronType", InputOutputNeuron.class); neuronProperties.setProperty("bias", new Double(0)); neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP); neuronProperties.setProperty("transferFunction.yHigh", new Double(1)); neuronProperties.setProperty("transferFunction.yLow", new Double(0)); this.createNetwork(inputNeuronsCount, outputNeuronsCount, neuronProperties); }
Example #29
Source File: SupervisedHebbianNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** *Creates an instance of Supervised Hebbian Network with specified number * of neurons in input layer, output layer and transfer function * * @param inputNeuronsNum * number of neurons in input layer * @param outputNeuronsNum * number of neurons in output layer * @param transferFunctionType * transfer function type */ private void createNetwork(int inputNeuronsNum, int outputNeuronsNum, TransferFunctionType transferFunctionType) { // init neuron properties NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("transferFunction", transferFunctionType); neuronProperties.setProperty("transferFunction.slope", new Double(1)); neuronProperties.setProperty("transferFunction.yHigh", new Double(1)); neuronProperties.setProperty("transferFunction.xHigh", new Double(1)); neuronProperties.setProperty("transferFunction.yLow", new Double(-1)); neuronProperties.setProperty("transferFunction.xLow", new Double(-1)); // set network type code this.setNetworkType(NeuralNetworkType.SUPERVISED_HEBBIAN_NET); // createLayer input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum, neuronProperties); this.addLayer(inputLayer); // createLayer output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum, neuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set appropriate learning rule for this network this.setLearningRule(new SupervisedHebbianLearning()); }
Example #30
Source File: Outstar.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates Outstar architecture with specified number of neurons in * output layer * * @param outputNeuronsCount * number of neurons in output layer */ private void createNetwork(int outputNeuronsCount ) { // set network type this.setNetworkType(NeuralNetworkType.OUTSTAR); // init neuron settings for this type of network NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP); // create input layer Layer inputLayer = LayerFactory.createLayer(1, neuronProperties); this.addLayer(inputLayer); // createLayer output layer neuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP); Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, neuronProperties); this.addLayer(outputLayer); // create full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set outstar learning rule for this network this.setLearningRule(new OutstarLearning()); }