burlap.mdp.auxiliary.common.SinglePFTF Java Examples
The following examples show how to use
burlap.mdp.auxiliary.common.SinglePFTF.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: GridWorldDQN.java From burlap_caffe with Apache License 2.0 | 6 votes |
public GridWorldDQN(String solverFile, double gamma) { //create the domain gwdg = new GridWorldDomain(11, 11); gwdg.setMapToFourRooms(); rf = new UniformCostRF(); tf = new SinglePFTF(PropositionalFunction.findPF(gwdg.generatePfs(), GridWorldDomain.PF_AT_LOCATION)); gwdg.setRf(rf); gwdg.setTf(tf); domain = gwdg.generateDomain(); goalCondition = new TFGoalCondition(tf); //set up the initial state of the task initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); //set up the state hashing system for tabular algorithms hashingFactory = new SimpleHashableStateFactory(); //set up the environment for learners algorithms env = new SimulatedEnvironment(domain, initialState); dqn = new DQN(solverFile, actionSet, new NNGridStateConverter(), gamma); }
Example #2
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Before public void setup() { this.gw = new GridWorldDomain(11, 11); this.gw.setMapToFourRooms(); this.gw.setRf(new UniformCostRF()); TerminalFunction tf = new SinglePFTF(PropositionalFunction.findPF(gw.generatePfs(), PF_AT_LOCATION)); this.gw.setTf(tf); this.domain = this.gw.generateDomain(); this.goalCondition = new TFGoalCondition(tf); this.hashingFactory = new SimpleHashableStateFactory(); }
Example #3
Source File: ExampleOOGridWorld.java From burlap_examples with MIT License | 4 votes |
@Override public OOSADomain generateDomain() { OOSADomain domain = new OOSADomain(); domain.addStateClass(CLASS_AGENT, ExGridAgent.class) .addStateClass(CLASS_LOCATION, EXGridLocation.class); domain.addActionTypes( new UniversalActionType(ACTION_NORTH), new UniversalActionType(ACTION_SOUTH), new UniversalActionType(ACTION_EAST), new UniversalActionType(ACTION_WEST)); OODomain.Helper.addPfsToDomain(domain, this.generatePfs()); OOGridWorldStateModel smodel = new OOGridWorldStateModel(); RewardFunction rf = new SingleGoalPFRF(domain.propFunction(PF_AT), 100, -1); TerminalFunction tf = new SinglePFTF(domain.propFunction(PF_AT)); domain.setModel(new FactoredModel(smodel, rf, tf)); return domain; }
Example #4
Source File: PlotTest.java From burlap_examples with MIT License | 2 votes |
public static void main(String [] args){ GridWorldDomain gw = new GridWorldDomain(11,11); //11x11 grid world gw.setMapToFourRooms(); //four rooms layout gw.setProbSucceedTransitionDynamics(0.8); //stochastic transitions with 0.8 success rate //ends when the agent reaches a location final TerminalFunction tf = new SinglePFTF( PropositionalFunction.findPF(gw.generatePfs(), GridWorldDomain.PF_AT_LOCATION)); //reward function definition final RewardFunction rf = new GoalBasedRF(new TFGoalCondition(tf), 5., -0.1); gw.setTf(tf); gw.setRf(rf); final OOSADomain domain = gw.generateDomain(); //generate the grid world domain //setup initial state GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0")); //initial state generator final ConstantStateGenerator sg = new ConstantStateGenerator(s); //set up the state hashing system for looking up states final SimpleHashableStateFactory hashingFactory = new SimpleHashableStateFactory(); /** * Create factory for Q-learning agent */ LearningAgentFactory qLearningFactory = new LearningAgentFactory() { public String getAgentName() { return "Q-learning"; } public LearningAgent generateAgent() { return new QLearning(domain, 0.99, hashingFactory, 0.3, 0.1); } }; //define learning environment SimulatedEnvironment env = new SimulatedEnvironment(domain, sg); //define experiment LearningAlgorithmExperimenter exp = new LearningAlgorithmExperimenter(env, 10, 100, qLearningFactory); exp.setUpPlottingConfiguration(500, 250, 2, 1000, TrialMode.MOST_RECENT_AND_AVERAGE, PerformanceMetric.CUMULATIVE_STEPS_PER_EPISODE, PerformanceMetric.AVERAGE_EPISODE_REWARD); //start experiment exp.startExperiment(); }