com.google.cloud.dataflow.sdk.transforms.Combine Java Examples
The following examples show how to use
com.google.cloud.dataflow.sdk.transforms.Combine.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: BreakFusion.java From dockerflow with Apache License 2.0 | 5 votes |
@Override public PCollection<T> apply(PCollection<T> input) { return input .apply(ParDo.named("BreakFusion").of(new DummyMapFn<T>())) .apply(Combine.<String, T>perKey(new First<T>())) .apply(Values.<T>create()); }
Example #2
Source File: DockerDo.java From dockerflow with Apache License 2.0 | 5 votes |
@Override public PCollection<KV<String, WorkflowArgs>> apply( PCollection<KV<String, WorkflowArgs>> input) { return input .apply(ParDo.named("Prepare").of(new Gather(task))) .apply(Combine.perKey(new SortArgs())) .apply(ParDo.named("CombineOutputs").of(new CombineArgs())); }
Example #3
Source File: MergeBranches.java From dockerflow with Apache License 2.0 | 5 votes |
@Override public PCollection<KV<String, WorkflowArgs>> apply( PCollectionList<KV<String, WorkflowArgs>> input) { return input .apply(Flatten.<KV<String, WorkflowArgs>>pCollections()) .apply(Combine.globally(new Merge())); }
Example #4
Source File: LatestRides.java From cloud-dataflow-nyc-taxi-tycoon with Apache License 2.0 | 5 votes |
public static void main(String[] args) { CustomPipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(CustomPipelineOptions.class); Pipeline p = Pipeline.create(options); p.apply(PubsubIO.Read.named("read from PubSub") .topic(String.format("projects/%s/topics/%s", options.getSourceProject(), options.getSourceTopic())) .timestampLabel("ts") .withCoder(TableRowJsonCoder.of())) .apply("key rides by rideid", MapElements.via((TableRow ride) -> KV.of(ride.get("ride_id").toString(), ride)) .withOutputType(new TypeDescriptor<KV<String, TableRow>>() {})) .apply("session windows on rides with early firings", Window.<KV<String, TableRow>>into( Sessions.withGapDuration(Duration.standardMinutes(60))) .triggering( AfterWatermark.pastEndOfWindow() .withEarlyFirings(AfterProcessingTime.pastFirstElementInPane().plusDelayOf(Duration.millis(2000)))) .accumulatingFiredPanes() .withAllowedLateness(Duration.ZERO)) .apply("group ride points on same ride", Combine.perKey(new LatestPointCombine())) .apply("discard key", MapElements.via((KV<String, TableRow> a) -> a.getValue()) .withOutputType(TypeDescriptor.of(TableRow.class))) .apply(PubsubIO.Write.named("WriteToPubsub") .topic(String.format("projects/%s/topics/%s", options.getSinkProject(), options.getSinkTopic())) .withCoder(TableRowJsonCoder.of())); p.run(); }
Example #5
Source File: FXTimeSeriesPipelineSRGTests.java From data-timeseries-java with Apache License 2.0 | 5 votes |
public PCollection<KV<String, TSProto>> generateCompleteWindowData(Pipeline pipeline, List<KV<String, TSProto>> data, WorkPacketConfig packetConfig) { LOG.info("Check to see that time streams with missing 'ticks' have been corrected"); PCollection<KV<String, TSProto>> tsData = setupDataInput(pipeline, data); PCollection<KV<String, TSProto>> windowedData = tsData.apply("CandleResolutionWindow", Window.<KV<String, TSProto>>into(FixedWindows .of(Duration.standardSeconds(((FXTimeSeriesPipelineOptions) pipeline.getOptions()) .getCandleResolution())))); // Determine streams that are missing in this Window and generate values for them PCollection<KV<String, TSProto>> generatedValues = windowedData .apply( "DetectMissingTimeSeriesValues", Combine.globally(new DetectMissingTimeSeriesValuesCombiner(packetConfig)) .withoutDefaults()).apply(ParDo.of(new CreateMissingTimeSeriesValuesDoFn())) .setName("CreateMissingTimeSeriesValues"); // Flatten the live streams and the generated streams together PCollection<KV<String, TSProto>> completeWindowData = PCollectionList.of(windowedData).and(generatedValues) .apply("MergeGeneratedLiveValues", Flatten.<KV<String, TSProto>>pCollections()); return completeWindowData; }
Example #6
Source File: FlinkAbstractParDoWrapper.java From flink-dataflow with Apache License 2.0 | 5 votes |
@Override protected <AggInputT, AggOutputT> Aggregator<AggInputT, AggOutputT> createAggregatorInternal(String name, Combine.CombineFn<AggInputT, ?, AggOutputT> combiner) { Accumulator acc = getRuntimeContext().getAccumulator(name); if (acc != null) { AccumulatorHelper.compareAccumulatorTypes(name, SerializableFnAggregatorWrapper.class, acc.getClass()); return (Aggregator<AggInputT, AggOutputT>) acc; } SerializableFnAggregatorWrapper<AggInputT, AggOutputT> accumulator = new SerializableFnAggregatorWrapper<>(combiner); getRuntimeContext().addAccumulator(name, accumulator); return accumulator; }
Example #7
Source File: FlinkGroupAlsoByWindowWrapper.java From flink-dataflow with Apache License 2.0 | 5 votes |
@Override protected <AggInputT, AggOutputT> Aggregator<AggInputT, AggOutputT> createAggregatorInternal(String name, Combine.CombineFn<AggInputT, ?, AggOutputT> combiner) { Accumulator acc = getRuntimeContext().getAccumulator(name); if (acc != null) { AccumulatorHelper.compareAccumulatorTypes(name, SerializableFnAggregatorWrapper.class, acc.getClass()); return (Aggregator<AggInputT, AggOutputT>) acc; } SerializableFnAggregatorWrapper<AggInputT, AggOutputT> accumulator = new SerializableFnAggregatorWrapper<>(combiner); getRuntimeContext().addAccumulator(name, accumulator); return accumulator; }
Example #8
Source File: FlinkGroupAlsoByWindowWrapper.java From flink-dataflow with Apache License 2.0 | 5 votes |
private FlinkGroupAlsoByWindowWrapper(PipelineOptions options, CoderRegistry registry, WindowingStrategy<KV<K, VIN>, BoundedWindow> windowingStrategy, KvCoder<K, VIN> inputCoder, Combine.KeyedCombineFn<K, VIN, VACC, VOUT> combiner) { Preconditions.checkNotNull(options); this.options = Preconditions.checkNotNull(options); this.coderRegistry = Preconditions.checkNotNull(registry); this.inputKvCoder = Preconditions.checkNotNull(inputCoder);//(KvCoder<K, VIN>) input.getCoder(); this.windowingStrategy = Preconditions.checkNotNull(windowingStrategy);//input.getWindowingStrategy(); this.combineFn = combiner; this.operator = createGroupAlsoByWindowOperator(); this.chainingStrategy = ChainingStrategy.ALWAYS; }
Example #9
Source File: FlinkGroupAlsoByWindowWrapper.java From flink-dataflow with Apache License 2.0 | 5 votes |
/** * Creates an DataStream where elements are grouped in windows based on the specified windowing strategy. * This method assumes that <b>elements are already grouped by key</b>. * <p/> * The difference with {@link #createForIterable(PipelineOptions, PCollection, KeyedStream)} * is that this method assumes that a combiner function is provided * (see {@link com.google.cloud.dataflow.sdk.transforms.Combine.KeyedCombineFn}). * A combiner helps at increasing the speed and, in most of the cases, reduce the per-window state. * * @param options the general job configuration options. * @param input the input Dataflow {@link com.google.cloud.dataflow.sdk.values.PCollection}. * @param groupedStreamByKey the input stream, it is assumed to already be grouped by key. * @param combiner the combiner to be used. * @param outputKvCoder the type of the output values. */ public static <K, VIN, VACC, VOUT> DataStream<WindowedValue<KV<K, VOUT>>> create( PipelineOptions options, PCollection input, KeyedStream<WindowedValue<KV<K, VIN>>, K> groupedStreamByKey, Combine.KeyedCombineFn<K, VIN, VACC, VOUT> combiner, KvCoder<K, VOUT> outputKvCoder) { Preconditions.checkNotNull(options); KvCoder<K, VIN> inputKvCoder = (KvCoder<K, VIN>) input.getCoder(); FlinkGroupAlsoByWindowWrapper windower = new FlinkGroupAlsoByWindowWrapper<>(options, input.getPipeline().getCoderRegistry(), input.getWindowingStrategy(), inputKvCoder, combiner); Coder<WindowedValue<KV<K, VOUT>>> windowedOutputElemCoder = WindowedValue.FullWindowedValueCoder.of( outputKvCoder, input.getWindowingStrategy().getWindowFn().windowCoder()); CoderTypeInformation<WindowedValue<KV<K, VOUT>>> outputTypeInfo = new CoderTypeInformation<>(windowedOutputElemCoder); DataStream<WindowedValue<KV<K, VOUT>>> groupedByKeyAndWindow = groupedStreamByKey .transform("GroupByWindowWithCombiner", new CoderTypeInformation<>(outputKvCoder), windower) .returns(outputTypeInfo); return groupedByKeyAndWindow; }
Example #10
Source File: FlinkGroupAlsoByWindowWrapper.java From flink-dataflow with Apache License 2.0 | 5 votes |
public static <K, VIN, VACC, VOUT> FlinkGroupAlsoByWindowWrapper createForTesting(PipelineOptions options, CoderRegistry registry, WindowingStrategy<KV<K, VIN>, BoundedWindow> windowingStrategy, KvCoder<K, VIN> inputCoder, Combine.KeyedCombineFn<K, VIN, VACC, VOUT> combiner) { Preconditions.checkNotNull(options); return new FlinkGroupAlsoByWindowWrapper(options, registry, windowingStrategy, inputCoder, combiner); }
Example #11
Source File: FlinkDoFnFunction.java From flink-dataflow with Apache License 2.0 | 4 votes |
@Override protected <AggInputT, AggOutputT> Aggregator<AggInputT, AggOutputT> createAggregatorInternal(String name, Combine.CombineFn<AggInputT, ?, AggOutputT> combiner) { SerializableFnAggregatorWrapper<AggInputT, AggOutputT> wrapper = new SerializableFnAggregatorWrapper<>(combiner); getRuntimeContext().addAccumulator(name, wrapper); return wrapper; }
Example #12
Source File: FlinkReduceFunction.java From flink-dataflow with Apache License 2.0 | 4 votes |
public FlinkReduceFunction(Combine.KeyedCombineFn<K, ?, VA, VO> keyedCombineFn) { this.keyedCombineFn = keyedCombineFn; }
Example #13
Source File: FlinkPartialReduceFunction.java From flink-dataflow with Apache License 2.0 | 4 votes |
public FlinkPartialReduceFunction(Combine.KeyedCombineFn<K, VI, VA, ?> keyedCombineFn) { this.keyedCombineFn = keyedCombineFn; }
Example #14
Source File: FlinkMultiOutputDoFnFunction.java From flink-dataflow with Apache License 2.0 | 4 votes |
@Override protected <AggInputT, AggOutputT> Aggregator<AggInputT, AggOutputT> createAggregatorInternal(String name, Combine.CombineFn<AggInputT, ?, AggOutputT> combiner) { SerializableFnAggregatorWrapper<AggInputT, AggOutputT> wrapper = new SerializableFnAggregatorWrapper<>(combiner); getRuntimeContext().addAccumulator(name, wrapper); return null; }
Example #15
Source File: FlinkBatchTransformTranslators.java From flink-dataflow with Apache License 2.0 | 4 votes |
@Override public void translateNode(Combine.PerKey<K, VI, VO> transform, FlinkBatchTranslationContext context) { DataSet<KV<K, VI>> inputDataSet = context.getInputDataSet(context.getInput(transform)); @SuppressWarnings("unchecked") Combine.KeyedCombineFn<K, VI, VA, VO> keyedCombineFn = (Combine.KeyedCombineFn<K, VI, VA, VO>) transform.getFn(); KvCoder<K, VI> inputCoder = (KvCoder<K, VI>) context.getInput(transform).getCoder(); Coder<VA> accumulatorCoder = null; try { accumulatorCoder = keyedCombineFn.getAccumulatorCoder(context.getInput(transform).getPipeline().getCoderRegistry(), inputCoder.getKeyCoder(), inputCoder.getValueCoder()); } catch (CannotProvideCoderException e) { e.printStackTrace(); // TODO } TypeInformation<KV<K, VI>> kvCoderTypeInformation = new KvCoderTypeInformation<>(inputCoder); TypeInformation<KV<K, VA>> partialReduceTypeInfo = new KvCoderTypeInformation<>(KvCoder.of(inputCoder.getKeyCoder(), accumulatorCoder)); Grouping<KV<K, VI>> inputGrouping = new UnsortedGrouping<>(inputDataSet, new Keys.ExpressionKeys<>(new String[]{"key"}, kvCoderTypeInformation)); FlinkPartialReduceFunction<K, VI, VA> partialReduceFunction = new FlinkPartialReduceFunction<>(keyedCombineFn); // Partially GroupReduce the values into the intermediate format VA (combine) GroupCombineOperator<KV<K, VI>, KV<K, VA>> groupCombine = new GroupCombineOperator<>(inputGrouping, partialReduceTypeInfo, partialReduceFunction, "GroupCombine: " + transform.getName()); // Reduce fully to VO GroupReduceFunction<KV<K, VA>, KV<K, VO>> reduceFunction = new FlinkReduceFunction<>(keyedCombineFn); TypeInformation<KV<K, VO>> reduceTypeInfo = context.getTypeInfo(context.getOutput(transform)); Grouping<KV<K, VA>> intermediateGrouping = new UnsortedGrouping<>(groupCombine, new Keys.ExpressionKeys<>(new String[]{"key"}, groupCombine.getType())); // Fully reduce the values and create output format VO GroupReduceOperator<KV<K, VA>, KV<K, VO>> outputDataSet = new GroupReduceOperator<>(intermediateGrouping, reduceTypeInfo, reduceFunction, transform.getName()); context.setOutputDataSet(context.getOutput(transform), outputDataSet); }
Example #16
Source File: FlinkStateInternals.java From flink-dataflow with Apache License 2.0 | 4 votes |
private FlinkInMemoryKeyedCombiningValue(ByteString stateKey, Combine.KeyedCombineFn<? super K, InputT, AccumT, OutputT> combineFn, Coder<AccumT> accumCoder, final StateContext<?> stateContext) { this(stateKey, withContext(combineFn), accumCoder, stateContext); }
Example #17
Source File: FlinkStateInternals.java From flink-dataflow with Apache License 2.0 | 4 votes |
private FlinkInMemoryKeyedCombiningValue(ByteString stateKey, Combine.CombineFn<InputT, AccumT, OutputT> combineFn, Coder<AccumT> accumCoder, final StateContext<?> stateContext) { this(stateKey, withKeyAndContext(combineFn), accumCoder, stateContext); }
Example #18
Source File: SerializableFnAggregatorWrapper.java From flink-dataflow with Apache License 2.0 | 4 votes |
@Override public Combine.CombineFn<AI, ?, AO> getCombineFn() { return combiner; }
Example #19
Source File: SerializableFnAggregatorWrapper.java From flink-dataflow with Apache License 2.0 | 4 votes |
public SerializableFnAggregatorWrapper(Combine.CombineFn<AI, ?, AO> combiner) { this.combiner = combiner; resetLocal(); }
Example #20
Source File: CombineFnAggregatorWrapper.java From flink-dataflow with Apache License 2.0 | 4 votes |
@Override public Combine.CombineFn getCombineFn() { return combiner; }
Example #21
Source File: CombineFnAggregatorWrapper.java From flink-dataflow with Apache License 2.0 | 4 votes |
public CombineFnAggregatorWrapper(Combine.CombineFn<? super AI, AA, AR> combiner) { this.combiner = combiner; this.aa = combiner.createAccumulator(); }
Example #22
Source File: FXTimeSeriesPipelineSRGTests.java From data-timeseries-java with Apache License 2.0 | 4 votes |
public PCollection<KV<String, TSAggValueProto>> createCompleteAggregates(Pipeline pipeline, List<KV<String, TSProto>> data, WorkPacketConfig packetConfig) { PCollection<KV<String, TSProto>> completeWindowData = generateCompleteWindowData(pipeline, data, packetConfig); PCollection<KV<String, TSAggValueProto>> parital = completeWindowData.apply("CreatePartialAggregates", Combine.perKey(new PartialTimeSeriesAggCombiner())); PCollection<KV<String, TSAggValueProto>> paritalWithWindowBoundary = parital.apply(ParDo.of(new EmbedWindowTimeIntoAggregateDoFn())); PCollection<KV<String, TSAggValueProto>> completeAggregationStage1 = paritalWithWindowBoundary.apply( "completeAggregationStage1", Window.<KV<String, TSAggValueProto>>into(new GlobalWindows()) .triggering(Repeatedly.forever(AfterPane.elementCountAtLeast(1))) .withOutputTimeFn(OutputTimeFns.outputAtEarliestInputTimestamp()) .accumulatingFiredPanes()); PCollection<KV<String, TSAggValueProto>> completeAggregationStage2 = completeAggregationStage1.apply("CreateCompleteCandles", Combine.perKey(new CompleteTimeSeriesAggCombiner())).apply("FlattenIterables", ParDo.of(new FlattenKVIterableDoFn())); PCollection<KV<String, TSAggValueProto>> completeAggregationStage3 = completeAggregationStage2.apply("ResetTimestampsAfterGlobalWindow", ParDo.of(new DoFn<KV<String, TSAggValueProto>, KV<String, TSAggValueProto>>() { @Override public void processElement( DoFn<KV<String, TSAggValueProto>, KV<String, TSAggValueProto>>.ProcessContext c) throws Exception { if (c.timestamp().isBefore(new Instant(32530703764000L))) { if (c.timestamp().isAfter( new Instant(c.element().getValue().getCloseState().getTime()))) { LOG.error("BUG There was a timestamp before current :: " + TextFormat.shortDebugString(c.element().getValue())); } else { c.outputWithTimestamp(c.element(), new Instant(c.element().getValue() .getCloseTime())); } } } })); return completeAggregationStage3; }
Example #23
Source File: CreateAggregatesTransform.java From data-timeseries-java with Apache License 2.0 | 4 votes |
@Override public PCollection<KV<String, TSAggValueProto>> apply(PCollection<KV<String, TSProto>> input) { PCollection<KV<String, TSProto>> windowedData = input.apply("CandleResolutionWindow", Window.<KV<String, TSProto>>into( FixedWindows.of(Duration.standardSeconds(options.getCandleResolution())))); // Determine streams that are missing in this Window and generate values for them PCollection<KV<String, TSProto>> generatedValues = windowedData .apply("DetectMissingTimeSeriesValues", Combine.globally(new DetectMissingTimeSeriesValuesCombiner(packetConfig)) .withoutDefaults()) .apply(ParDo.of(new CreateMissingTimeSeriesValuesDoFn())) .setName("CreateMissingTimeSeriesValues"); // Flatten the live streams and the generated streams together PCollection<KV<String, TSProto>> completeWindowData = PCollectionList.of(windowedData).and(generatedValues).apply("MergeGeneratedLiveValues", Flatten.<KV<String, TSProto>>pCollections()); // Create partial aggregates, at this stage we will not bring forward the previous windows close // value PCollection<KV<String, TSAggValueProto>> parital = completeWindowData .apply("CreatePartialAggregates", Combine.perKey(new PartialTimeSeriesAggCombiner())); // When these aggregates go through the Global Window they will lose their time value // We will embed the window close into the data so we can access it later on PCollection<KV<String, TSAggValueProto>> paritalWithWindowBoundary = parital.apply(ParDo.of(new EmbedWindowTimeIntoAggregateDoFn())); // Create a Global window which can retain the last value held in memory We must use // outputAtEarliestInputTimestamp as later on we re-attach the timestamp from within the data // point, for us not to hit 'skew' issues we need to ensure the output timestamp value is always // the smallest value PCollection<KV<String, TSAggValueProto>> completeAggregationStage1 = paritalWithWindowBoundary.apply("completeAggregationStage1", Window.<KV<String, TSAggValueProto>>into(new GlobalWindows()) .triggering(Repeatedly.forever(AfterPane.elementCountAtLeast(1))) .withOutputTimeFn(OutputTimeFns.outputAtEarliestInputTimestamp()) .accumulatingFiredPanes()); PCollection<KV<String, TSAggValueProto>> completeAggregationStage2 = completeAggregationStage1 .apply("CreateCompleteCandles", Combine.perKey(new CompleteTimeSeriesAggCombiner())) .apply("FlattenIterables", ParDo.of(new FlattenKVIterableDoFn())); // Reset timestamps after global window PCollection<KV<String, TSAggValueProto>> completeAggregationStage3 = completeAggregationStage2.apply("ResetTimestampsAfterGlobalWindow", ParDo.of(new DoFn<KV<String, TSAggValueProto>, KV<String, TSAggValueProto>>() { @Override public void processElement( DoFn<KV<String, TSAggValueProto>, KV<String, TSAggValueProto>>.ProcessContext c) throws Exception { // // TODO When the local Dataflow runners shuts down there will be some values // produced for the end of the the GlobalWindow. We can remove these values by // filtering out anything from year 3000+ for now. Better solution will be to check // the WINDOW PANE // Instant time = c.timestamp(); if (time.isBefore(new Instant(32530703764000L))) { // The timestamp produced from the Combiner after the GlobalWindow loses fidelity, // we can add this back by looking at the value in the data if (time .isAfter(new Instant(c.element().getValue().getCloseState().getTime()))) { LOG.error( "There was a timestamp before earlier than the window and skew must be 0 :: " + TextFormat.shortDebugString(c.element().getValue())); } else { c.outputWithTimestamp(c.element(), new Instant(c.element().getValue().getCloseTime())); } } } })); return completeAggregationStage3; }