org.apache.spark.sql.Encoder Java Examples
The following examples show how to use
org.apache.spark.sql.Encoder.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: Dataset.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> mapPartitions( final scala.Function1<scala.collection.Iterator<T>, scala.collection.Iterator<U>> func, final Encoder<U> evidence) { final boolean userTriggered = initializeFunction(func, evidence); final Dataset<U> result = from(super.mapPartitions(func, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #2
Source File: Dataset.java From nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> mapPartitions(final MapPartitionsFunction<T, U> f, final Encoder<U> encoder) { final boolean userTriggered = initializeFunction(f, encoder); final Dataset<U> result = from(super.mapPartitions(f, encoder)); this.setIsUserTriggered(userTriggered); return result; }
Example #3
Source File: Dataset.java From nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> mapPartitions( final scala.Function1<scala.collection.Iterator<T>, scala.collection.Iterator<U>> func, final Encoder<U> evidence) { final boolean userTriggered = initializeFunction(func, evidence); final Dataset<U> result = from(super.mapPartitions(func, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #4
Source File: DataSetApplication.java From sparkResearch with Apache License 2.0 | 5 votes |
public static void main(String[] args) { SparkSession sparkSession = SparkSession.builder().master("local") .appName("Java Spark SQL") .getOrCreate(); Person person = new Person("spark",10); Encoder<Person> encoder = Encoders.bean(Person.class); Dataset<Person> dataset = sparkSession.createDataset(Collections.singletonList(person),encoder); dataset.show(); //最终输出 {name:spark;age:10} /*常见类型的编码器*/ Encoder<Integer> integerEncoder = Encoders.INT(); Dataset<Integer> integerDataset = sparkSession.createDataset(Arrays.asList(1,2),integerEncoder); Dataset<Integer> result = integerDataset.map(new MapFunction<Integer, Integer>() { @Override public Integer call(Integer value) { return value+1; } },integerEncoder); result.collect(); //最终输出 [2,3] /*通过提供一个类,可以将数据流转换为数据集。基于名称的映射*/ String url = "/usr/local/text.json"; Dataset<Person> personDataset = sparkSession.read().json(url).as(encoder); personDataset.show(); //最终输出 name:... age:,,,, }
Example #5
Source File: Dataset.java From nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> map(final MapFunction<T, U> func, final Encoder<U> encoder) { final boolean userTriggered = initializeFunction(func, encoder); final Dataset<U> result = from(super.map(func, encoder)); this.setIsUserTriggered(userTriggered); return result; }
Example #6
Source File: Dataset.java From nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> map(final scala.Function1<T, U> func, final Encoder<U> evidence) { final boolean userTriggered = initializeFunction(func, evidence); final Dataset<U> result = from(super.map(func, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #7
Source File: Dataset.java From nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> as(final Encoder<U> evidence) { final boolean userTriggered = initializeFunction(evidence); final Dataset<U> result = from(super.as(evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #8
Source File: SparkSession.java From nemo with Apache License 2.0 | 5 votes |
@Override public <T> Dataset<T> createDataset(final scala.collection.Seq<T> data, final Encoder<T> evidence) { final boolean userTriggered = initializeFunction(data, evidence); final Dataset<T> result = Dataset.from(super.createDataset(data, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #9
Source File: EncoderHelpers.java From beam with Apache License 2.0 | 5 votes |
/** * Wrap a Beam coder into a Spark Encoder using Catalyst Expression Encoders (which uses java code * generation). */ public static <T> Encoder<T> fromBeamCoder(Coder<T> coder) { Class<? super T> clazz = coder.getEncodedTypeDescriptor().getRawType(); ClassTag<T> classTag = ClassTag$.MODULE$.apply(clazz); List<Expression> serializers = Collections.singletonList( new EncodeUsingBeamCoder<>(new BoundReference(0, new ObjectType(clazz), true), coder)); return new ExpressionEncoder<>( SchemaHelpers.binarySchema(), false, JavaConversions.collectionAsScalaIterable(serializers).toSeq(), new DecodeUsingBeamCoder<>( new Cast(new GetColumnByOrdinal(0, BinaryType), BinaryType), classTag, coder), classTag); }
Example #10
Source File: JavaBean.java From learning-spark-with-java with MIT License | 5 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("Dataset-JavaBean") .master("local[4]") .getOrCreate(); // // The Java API requires you to explicitly instantiate an encoder for // any JavaBean you want to use for schema inference // Encoder<Number> numberEncoder = Encoders.bean(Number.class); // // Create a container of the JavaBean instances // List<Number> data = Arrays.asList( new Number(1, "one", "un"), new Number(2, "two", "deux"), new Number(3, "three", "trois")); // // Use the encoder and the container of JavaBean instances to create a // Dataset // Dataset<Number> ds = spark.createDataset(data, numberEncoder); System.out.println("*** here is the schema inferred from the bean"); ds.printSchema(); System.out.println("*** here is the data"); ds.show(); // Use the convenient bean-inferred column names to query System.out.println("*** filter by one column and fetch others"); ds.where(col("i").gt(2)).select(col("english"), col("french")).show(); spark.stop(); }
Example #11
Source File: Dataset.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> mapPartitions(final MapPartitionsFunction<T, U> f, final Encoder<U> encoder) { final boolean userTriggered = initializeFunction(f, encoder); final Dataset<U> result = from(super.mapPartitions(f, encoder)); this.setIsUserTriggered(userTriggered); return result; }
Example #12
Source File: Dataset.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> map(final MapFunction<T, U> func, final Encoder<U> encoder) { final boolean userTriggered = initializeFunction(func, encoder); final Dataset<U> result = from(super.map(func, encoder)); this.setIsUserTriggered(userTriggered); return result; }
Example #13
Source File: Dataset.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> map(final scala.Function1<T, U> func, final Encoder<U> evidence) { final boolean userTriggered = initializeFunction(func, evidence); final Dataset<U> result = from(super.map(func, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #14
Source File: Dataset.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <U> Dataset<U> as(final Encoder<U> evidence) { final boolean userTriggered = initializeFunction(evidence); final Dataset<U> result = from(super.as(evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #15
Source File: SparkSession.java From nemo with Apache License 2.0 | 5 votes |
@Override public <T> Dataset<T> createDataset(final RDD<T> data, final Encoder<T> evidence) { final boolean userTriggered = initializeFunction(data, evidence); final Dataset<T> result = Dataset.from(super.createDataset(data, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #16
Source File: SparkSession.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <T> Dataset<T> createDataset(final scala.collection.Seq<T> data, final Encoder<T> evidence) { final boolean userTriggered = initializeFunction(data, evidence); final Dataset<T> result = Dataset.from(super.createDataset(data, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #17
Source File: SparkSession.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <T> Dataset<T> createDataset(final RDD<T> data, final Encoder<T> evidence) { final boolean userTriggered = initializeFunction(data, evidence); final Dataset<T> result = Dataset.from(super.createDataset(data, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #18
Source File: SparkSession.java From incubator-nemo with Apache License 2.0 | 5 votes |
@Override public <T> Dataset<T> createDataset(final java.util.List<T> data, final Encoder<T> evidence) { final boolean userTriggered = initializeFunction(data, evidence); final Dataset<T> result = Dataset.from(super.createDataset(data, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #19
Source File: JavaUserDefinedTypedAggregation.java From incubator-nemo with Apache License 2.0 | 5 votes |
/** * Main function. * * @param args arguments. */ public static void main(final String[] args) { SparkSession spark = SparkSession .builder() .appName("Java Spark SQL user-defined Datasets aggregation example") .getOrCreate(); Encoder<Employee> employeeEncoder = Encoders.bean(Employee.class); String path = args[0]; Dataset<Employee> ds = spark.read().json(path).as(employeeEncoder); ds.show(); // +-------+------+ // | name|salary| // +-------+------+ // |Michael| 3000| // | Andy| 4500| // | Justin| 3500| // | Berta| 4000| // +-------+------+ MyAverage myAverage = new MyAverage(); // Convert the function to a `TypedColumn` and give it a name TypedColumn<Employee, Double> averageSalary = myAverage.toColumn().name("average_salary"); Dataset<Double> result = ds.select(averageSalary); result.show(); // +--------------+ // |average_salary| // +--------------+ // | 3750.0| // +--------------+ spark.stop(); }
Example #20
Source File: SparkSession.java From nemo with Apache License 2.0 | 5 votes |
@Override public <T> Dataset<T> createDataset(final java.util.List<T> data, final Encoder<T> evidence) { final boolean userTriggered = initializeFunction(data, evidence); final Dataset<T> result = Dataset.from(super.createDataset(data, evidence)); this.setIsUserTriggered(userTriggered); return result; }
Example #21
Source File: JavaUserDefinedTypedAggregation.java From nemo with Apache License 2.0 | 5 votes |
/** * Main function. * @param args arguments. */ public static void main(final String[] args) { SparkSession spark = SparkSession .builder() .appName("Java Spark SQL user-defined Datasets aggregation example") .getOrCreate(); Encoder<Employee> employeeEncoder = Encoders.bean(Employee.class); String path = args[0]; Dataset<Employee> ds = spark.read().json(path).as(employeeEncoder); ds.show(); // +-------+------+ // | name|salary| // +-------+------+ // |Michael| 3000| // | Andy| 4500| // | Justin| 3500| // | Berta| 4000| // +-------+------+ MyAverage myAverage = new MyAverage(); // Convert the function to a `TypedColumn` and give it a name TypedColumn<Employee, Double> averageSalary = myAverage.toColumn().name("average_salary"); Dataset<Double> result = ds.select(averageSalary); result.show(); // +--------------+ // |average_salary| // +--------------+ // | 3750.0| // +--------------+ spark.stop(); }
Example #22
Source File: TestStructuredStreaming3.java From iceberg with Apache License 2.0 | 4 votes |
@Override protected <T> MemoryStream<T> newMemoryStream(int id, SQLContext sqlContext, Encoder<T> encoder) { return new MemoryStream<>(id, sqlContext, Option.empty(), encoder); }
Example #23
Source File: Basic.java From learning-spark-with-java with MIT License | 4 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("Dataset-Basic") .master("local[4]") .getOrCreate(); List<Integer> data = Arrays.asList(10, 11, 12, 13, 14, 15); Dataset<Integer> ds = spark.createDataset(data, Encoders.INT()); System.out.println("*** only one column, and it always has the same name"); ds.printSchema(); ds.show(); System.out.println("*** values > 12"); // the harder way to filter Dataset<Integer> ds2 = ds.filter((Integer value) -> value > 12); ds.show(); List<Tuple3<Integer, String, String>> tuples = Arrays.asList( new Tuple3<>(1, "one", "un"), new Tuple3<>(2, "two", "deux"), new Tuple3<>(3, "three", "trois")); Encoder<Tuple3<Integer, String, String>> encoder = Encoders.tuple(Encoders.INT(), Encoders.STRING(), Encoders.STRING()); Dataset<Tuple3<Integer, String, String>> tupleDS = spark.createDataset(tuples, encoder); System.out.println("*** Tuple Dataset types"); tupleDS.printSchema(); // the tuple columns have unfriendly names, but you can use them to query System.out.println("*** filter by one column and fetch another"); tupleDS.where(col("_1").gt(2)).select(col("_2"), col("_3")).show(); spark.stop(); }
Example #24
Source File: DatasetRowRuleWrapper.java From envelope with Apache License 2.0 | 4 votes |
@Override public Encoder<Row> bufferEncoder() { return RowEncoder.apply(SCHEMA); }
Example #25
Source File: JavaSparkSQLExample.java From SparkDemo with MIT License | 4 votes |
private static void runDatasetCreationExample(SparkSession spark) { // $example on:create_ds$ // Create an instance of a Bean class Person person = new Person(); person.setName("Andy"); person.setAge(32); // Encoders are created for Java beans Encoder<Person> personEncoder = Encoders.bean(Person.class); Dataset<Person> javaBeanDS = spark.createDataset( Collections.singletonList(person), personEncoder ); javaBeanDS.show(); // +---+----+ // |age|name| // +---+----+ // | 32|Andy| // +---+----+ // Encoders for most common types are provided in class Encoders Encoder<Integer> integerEncoder = Encoders.INT(); Dataset<Integer> primitiveDS = spark.createDataset(Arrays.asList(1, 2, 3), integerEncoder); Dataset<Integer> transformedDS = primitiveDS.map(new MapFunction<Integer, Integer>() { @Override public Integer call(Integer value) throws Exception { return value + 1; } }, integerEncoder); transformedDS.collect(); // Returns [2, 3, 4] // DataFrames can be converted to a Dataset by providing a class. Mapping based on name String path = Constant.LOCAL_FILE_PREX +"/data/resources/people.json"; Dataset<Person> peopleDS = spark.read().json(path).as(personEncoder); peopleDS.show(); // +----+-------+ // | age| name| // +----+-------+ // |null|Michael| // | 30| Andy| // | 19| Justin| // +----+-------+ // $example off:create_ds$ }
Example #26
Source File: TypeSafeUDAF.java From Apache-Spark-2x-for-Java-Developers with MIT License | 4 votes |
public Encoder<Double> outputEncoder() { return Encoders.DOUBLE(); }
Example #27
Source File: TypeSafeUDAF.java From Apache-Spark-2x-for-Java-Developers with MIT License | 4 votes |
public Encoder<Average> bufferEncoder() { return Encoders.bean(Average.class); }
Example #28
Source File: TestForwardCompatibility3.java From iceberg with Apache License 2.0 | 4 votes |
@Override protected <T> MemoryStream<T> newMemoryStream(int id, SQLContext sqlContext, Encoder<T> encoder) { return new MemoryStream<>(id, sqlContext, Option.empty(), encoder); }
Example #29
Source File: DatasetRowRuleWrapper.java From envelope with Apache License 2.0 | 4 votes |
@Override public Encoder<Row> outputEncoder() { return RowEncoder.apply(SCHEMA); }
Example #30
Source File: TestStructuredStreaming24.java From iceberg with Apache License 2.0 | 4 votes |
@Override protected <T> MemoryStream<T> newMemoryStream(int id, SQLContext sqlContext, Encoder<T> encoder) { return new MemoryStream<>(id, sqlContext, encoder); }