org.apache.hadoop.io.ArrayPrimitiveWritable Java Examples
The following examples show how to use
org.apache.hadoop.io.ArrayPrimitiveWritable.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SparkFactDistinct.java From kylin with Apache License 2.0 | 6 votes |
private void outputDict(TblColRef col, Dictionary<String> dict, List<Tuple2<String, Tuple3<Writable, Writable, String>>> result) throws IOException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos)) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); result.add(new Tuple2<String, Tuple3<Writable, Writable, String>>(BatchConstants.CFG_OUTPUT_DICT, new Tuple3<Writable, Writable, String>(NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName))); } }
Example #2
Source File: FactDistinctColumnsReducerTest.java From kylin with Apache License 2.0 | 6 votes |
private void testNormalDim() throws IOException { setConfigurations(); setMultipleOutputs(BatchConstants.CFG_OUTPUT_COLUMN, reduceDriver.getConfiguration(), SequenceFileOutputFormat.class, NullWritable.class, Text.class); setMultipleOutputs(BatchConstants.CFG_OUTPUT_DICT, reduceDriver.getConfiguration(), SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); setMultipleOutputs(BatchConstants.CFG_OUTPUT_PARTITION, reduceDriver.getConfiguration(), TextOutputFormat.class, NullWritable.class, LongWritable.class); int nDimReducers = cubeDesc.getRowkey().getRowKeyColumns().length; setContextTaskId(nDimReducers - 1); ByteBuffer tmpBuf = ByteBuffer.allocate(4096); String val = "100"; tmpBuf.put(Bytes.toBytes(val)); Text outputKey1 = new Text(); outputKey1.set(tmpBuf.array(), 0, tmpBuf.position()); SelfDefineSortableKey key1 = new SelfDefineSortableKey(); key1.init(outputKey1, (byte) 0); reduceDriver.setInput(key1, ImmutableList.of(new Text())); List<Pair<NullWritable, Text>> result = reduceDriver.run(); assertEquals(0, result.size()); }
Example #3
Source File: Server.java From ytk-mp4j with MIT License | 6 votes |
@Override public ArrayPrimitiveWritable arrayAllReduce(ArrayPrimitiveWritable byteSerialArray, int rank) throws Mp4jException { try { byte[] obj = (byte[])byteSerialArray.get(); allReduceByteArray.write(obj); barrier.await(); if (rank == 0) { allReduceReturnArray = new ArrayPrimitiveWritable(allReduceByteArray.toByteArray()); allReduceByteArray.reset(); } barrier.await(); return allReduceReturnArray; } catch (Exception e) { throw new Mp4jException("array allreduce exception!"); } }
Example #4
Source File: SparkFactDistinct.java From kylin-on-parquet-v2 with Apache License 2.0 | 6 votes |
private void outputDict(TblColRef col, Dictionary<String> dict, List<Tuple2<String, Tuple3<Writable, Writable, String>>> result) throws IOException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos)) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); result.add(new Tuple2<String, Tuple3<Writable, Writable, String>>(BatchConstants.CFG_OUTPUT_DICT, new Tuple3<Writable, Writable, String>(NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName))); } }
Example #5
Source File: FactDistinctColumnsJob.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
private void setupReducer(Path output, CubeSegment cubeSeg) throws IOException { FactDistinctColumnsReducerMapping reducerMapping = new FactDistinctColumnsReducerMapping(cubeSeg.getCubeInstance()); int numberOfReducers = reducerMapping.getTotalReducerNum(); logger.info("{} has reducers {}.", this.getClass().getName(), numberOfReducers); if (numberOfReducers > 250) { throw new IllegalArgumentException( "The max reducer number for FactDistinctColumnsJob is 250, but now it is " + numberOfReducers + ", decrease 'kylin.engine.mr.uhc-reducer-count'"); } job.setReducerClass(FactDistinctColumnsReducer.class); job.setPartitionerClass(FactDistinctColumnPartitioner.class); job.setNumReduceTasks(numberOfReducers); // make each reducer output to respective dir MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_COLUMN, SequenceFileOutputFormat.class, NullWritable.class, Text.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_STATISTICS, SequenceFileOutputFormat.class, LongWritable.class, BytesWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_PARTITION, TextOutputFormat.class, NullWritable.class, LongWritable.class); FileOutputFormat.setOutputPath(job, output); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, output.toString()); // prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); deletePath(job.getConfiguration(), output); }
Example #6
Source File: SparkUHCDictionary.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
@Override public Tuple2<String, Tuple3<Writable, Writable, String>> call(Tuple2<Integer, List<String>> columnValues) throws Exception { if (initialized == false) { synchronized (SparkFactDistinct.class) { if (initialized == false) { init(); } } } try (KylinConfig.SetAndUnsetThreadLocalConfig autoUnset = KylinConfig.setAndUnsetThreadLocalConfig(config); ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos)) { TblColRef col = uhcColumns.get(columnValues._1); logger.info("Processing column " + col.getName()); if (cube.getDescriptor().getShardByColumns().contains(col)) { //for ShardByColumns builder = DictionaryGenerator.newDictionaryBuilder(col.getType()); builder.init(null, 0, null); } else { //for GlobalDictionaryColumns DictionaryInfo dictionaryInfo = new DictionaryInfo(col.getColumnDesc(), col.getDatatype()); String builderClass = cubeDesc.getDictionaryBuilderClass(col); builder = (IDictionaryBuilder) ClassUtil.newInstance(builderClass); builder.init(dictionaryInfo, 0, hdfsDir); } Iterator<String> values = columnValues._2.iterator(); while (values.hasNext()) { builder.addValue(values.next()); } Dictionary<String> dict = builder.build(); String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; logger.info("Dictionary file name is " + dictFileName); outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); Tuple3 tuple3 = new Tuple3(NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); return new Tuple2<>(BatchConstants.CFG_OUTPUT_DICT, tuple3); } }
Example #7
Source File: FactDistinctColumnsReducer.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
private void outputDict(TblColRef col, Dictionary<String> dict) throws IOException, InterruptedException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos);) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); mos.write(BatchConstants.CFG_OUTPUT_DICT, NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); } }
Example #8
Source File: UHCDictionaryReducer.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
private void outputDict(TblColRef col, Dictionary<String> dict) throws IOException, InterruptedException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos);) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); mos.write(BatchConstants.CFG_OUTPUT_DICT, NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); } mos.close(); }
Example #9
Source File: SparkUHCDictionary.java From kylin with Apache License 2.0 | 5 votes |
@Override public Tuple2<String, Tuple3<Writable, Writable, String>> call(Tuple2<Integer, List<String>> columnValues) throws Exception { if (initialized == false) { synchronized (SparkFactDistinct.class) { if (initialized == false) { init(); } } } try (KylinConfig.SetAndUnsetThreadLocalConfig autoUnset = KylinConfig.setAndUnsetThreadLocalConfig(config); ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos)) { TblColRef col = uhcColumns.get(columnValues._1); logger.info("Processing column " + col.getName()); if (cube.getDescriptor().getShardByColumns().contains(col)) { //for ShardByColumns builder = DictionaryGenerator.newDictionaryBuilder(col.getType()); builder.init(null, 0, null); } else { //for GlobalDictionaryColumns DictionaryInfo dictionaryInfo = new DictionaryInfo(col.getColumnDesc(), col.getDatatype()); String builderClass = cubeDesc.getDictionaryBuilderClass(col); builder = (IDictionaryBuilder) ClassUtil.newInstance(builderClass); builder.init(dictionaryInfo, 0, hdfsDir); } Iterator<String> values = columnValues._2.iterator(); while (values.hasNext()) { builder.addValue(values.next()); } Dictionary<String> dict = builder.build(); String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; logger.info("Dictionary file name is " + dictFileName); outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); Tuple3 tuple3 = new Tuple3(NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); return new Tuple2<>(BatchConstants.CFG_OUTPUT_DICT, tuple3); } }
Example #10
Source File: FactDistinctColumnsJob.java From kylin with Apache License 2.0 | 5 votes |
private void setupReducer(Path output, CubeSegment cubeSeg) throws IOException { FactDistinctColumnsReducerMapping reducerMapping = new FactDistinctColumnsReducerMapping(cubeSeg.getCubeInstance()); int numberOfReducers = reducerMapping.getTotalReducerNum(); logger.info("{} has reducers {}.", this.getClass().getName(), numberOfReducers); if (numberOfReducers > 250) { throw new IllegalArgumentException( "The max reducer number for FactDistinctColumnsJob is 250, but now it is " + numberOfReducers + ", decrease 'kylin.engine.mr.uhc-reducer-count'"); } job.setReducerClass(FactDistinctColumnsReducer.class); job.setPartitionerClass(FactDistinctColumnPartitioner.class); job.setNumReduceTasks(numberOfReducers); // make each reducer output to respective dir MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_COLUMN, SequenceFileOutputFormat.class, NullWritable.class, Text.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_STATISTICS, SequenceFileOutputFormat.class, LongWritable.class, BytesWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_PARTITION, TextOutputFormat.class, NullWritable.class, LongWritable.class); FileOutputFormat.setOutputPath(job, output); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, output.toString()); // prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); deletePath(job.getConfiguration(), output); }
Example #11
Source File: UHCDictionaryJob.java From kylin with Apache License 2.0 | 5 votes |
private void setupReducer(Path output, int numberOfReducers) throws IOException { job.setReducerClass(UHCDictionaryReducer.class); job.setPartitionerClass(UHCDictionaryPartitioner.class); job.setNumReduceTasks(numberOfReducers); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); FileOutputFormat.setOutputPath(job, output); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, output.toString()); //prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); deletePath(job.getConfiguration(), output); }
Example #12
Source File: UHCDictionaryReducer.java From kylin with Apache License 2.0 | 5 votes |
private void outputDict(TblColRef col, Dictionary<String> dict) throws IOException, InterruptedException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos);) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); mos.write(BatchConstants.CFG_OUTPUT_DICT, NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); } mos.close(); }
Example #13
Source File: FactDistinctColumnsBase.java From kylin with Apache License 2.0 | 5 votes |
private void outputDict(TblColRef col, Dictionary<String> dict, Visitor visitor) throws IOException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos)) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); visitor.collect(BatchConstants.CFG_OUTPUT_DICT, NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); } }
Example #14
Source File: FactDistinctColumnsReducer.java From kylin with Apache License 2.0 | 5 votes |
private void outputDict(TblColRef col, Dictionary<String> dict) throws IOException, InterruptedException { // output written to baseDir/colName/colName.rldict-r-00000 (etc) String dictFileName = col.getIdentity() + "/" + col.getName() + DICT_FILE_POSTFIX; try (ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream outputStream = new DataOutputStream(baos);) { outputStream.writeUTF(dict.getClass().getName()); dict.write(outputStream); mos.write(BatchConstants.CFG_OUTPUT_DICT, NullWritable.get(), new ArrayPrimitiveWritable(baos.toByteArray()), dictFileName); } }
Example #15
Source File: UHCDictionaryJob.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
private void setupReducer(Path output, int numberOfReducers) throws IOException { job.setReducerClass(UHCDictionaryReducer.class); job.setPartitionerClass(UHCDictionaryPartitioner.class); job.setNumReduceTasks(numberOfReducers); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); FileOutputFormat.setOutputPath(job, output); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, output.toString()); //prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); deletePath(job.getConfiguration(), output); }
Example #16
Source File: ValueWritableConverterTest.java From oryx with Apache License 2.0 | 4 votes |
@Test(expected = IllegalArgumentException.class) public void testNoSuchMethod() { new ValueWritableConverter<>(byte[].class, ArrayPrimitiveWritable.class); }
Example #17
Source File: SparkUHCDictionary.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String counterPath = optionsHelper.getOptionValue(OPTION_COUNTER_PATH); Class[] kryoClassArray = new Class[]{Class.forName("scala.reflect.ClassTag$$anon$1"), Class.forName("org.apache.kylin.engine.mr.steps.SelfDefineSortableKey")}; SparkConf conf = new SparkConf().setAppName("Build uhc dictionary with spark for:" + cubeName + " segment " + segmentId); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); try (JavaSparkContext sc = new JavaSparkContext(conf)) { sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(outputPath)); Configuration hadoopConf = sc.hadoopConfiguration(); hadoopConf.set("mapreduce.input.pathFilter.class", "org.apache.kylin.engine.mr.steps.filter.UHCDictPathFilter"); final SerializableConfiguration sConf = new SerializableConfiguration(hadoopConf); KylinConfig config = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); CubeManager cubeMgr = CubeManager.getInstance(config); CubeInstance cube = cubeMgr.getCube(cubeName); final Job job = Job.getInstance(sConf.get()); // calculate source record bytes size final LongAccumulator bytesWritten = sc.sc().longAccumulator(); String hdfsDir = sc.hadoopConfiguration().get(BatchConstants.CFG_GLOBAL_DICT_BASE_DIR); List<TblColRef> uhcColumns = cube.getDescriptor().getAllUHCColumns(); int reducerCount = uhcColumns.size(); if (reducerCount == 0) { return; } logger.info("RDD Output path: {}", outputPath); logger.info("getTotalReducerNum: {}", reducerCount); logger.info("counter path {}", counterPath); JavaPairRDD<String, String> wholeSequenceFileNames = null; for (TblColRef tblColRef : uhcColumns) { String columnPath = inputPath + "/" + tblColRef.getIdentity(); if (!HadoopUtil.getFileSystem(columnPath).exists(new Path(columnPath))) { continue; } if (wholeSequenceFileNames == null) { wholeSequenceFileNames = sc.wholeTextFiles(columnPath); } else { wholeSequenceFileNames = wholeSequenceFileNames.union(sc.wholeTextFiles(columnPath)); } } if (wholeSequenceFileNames == null) { logger.error("There're no sequence files at " + inputPath + " !"); return; } JavaPairRDD<String, Tuple3<Writable, Writable, String>> pairRDD = wholeSequenceFileNames.map(tuple -> tuple._1) .mapToPair(new InputPathAndFilterAddFunction2(config, uhcColumns)) .filter(tuple -> tuple._1 != -1) .reduceByKey((list1, list2) -> combineAllColumnDistinctValues(list1, list2)) .mapToPair(new ProcessUHCColumnValues(cubeName, config, hdfsDir, uhcColumns)); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); FileOutputFormat.setOutputPath(job, new Path(outputPath)); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, outputPath); //prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); MultipleOutputsRDD multipleOutputsRDD = MultipleOutputsRDD.rddToMultipleOutputsRDD(pairRDD); multipleOutputsRDD.saveAsNewAPIHadoopDatasetWithMultipleOutputs(job.getConfiguration()); logger.info("Map input records={}", reducerCount); logger.info("HDFS Read: {} HDFS Write", bytesWritten.value()); Map<String, String> counterMap = Maps.newHashMap(); counterMap.put(ExecutableConstants.SOURCE_RECORDS_COUNT, String.valueOf(reducerCount)); counterMap.put(ExecutableConstants.SOURCE_RECORDS_SIZE, String.valueOf(bytesWritten.value())); // save counter to hdfs HadoopUtil.writeToSequenceFile(sc.hadoopConfiguration(), counterPath, counterMap); HadoopUtil.deleteHDFSMeta(metaUrl); } }
Example #18
Source File: FlinkFactDistinctColumns.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String hiveTable = optionsHelper.getOptionValue(OPTION_INPUT_TABLE); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String counterPath = optionsHelper.getOptionValue(OPTION_COUNTER_PATH); int samplingPercent = Integer.parseInt(optionsHelper.getOptionValue(OPTION_STATS_SAMPLING_PERCENT)); String enableObjectReuseOptValue = optionsHelper.getOptionValue(OPTION_ENABLE_OBJECT_REUSE); Job job = Job.getInstance(); FileSystem fs = HadoopUtil.getWorkingFileSystem(job.getConfiguration()); HadoopUtil.deletePath(job.getConfiguration(), new Path(outputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(job.getConfiguration()); KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final FactDistinctColumnsReducerMapping reducerMapping = new FactDistinctColumnsReducerMapping(cubeInstance); final int totalReducer = reducerMapping.getTotalReducerNum(); logger.info("getTotalReducerNum: {}", totalReducer); logger.info("getCuboidRowCounterReducerNum: {}", reducerMapping.getCuboidRowCounterReducerNum()); logger.info("counter path {}", counterPath); boolean isSequenceFile = JoinedFlatTable.SEQUENCEFILE.equalsIgnoreCase(envConfig.getFlatTableStorageFormat()); // calculate source record bytes size final String bytesWrittenName = "byte-writer-counter"; final String recordCounterName = "record-counter"; ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (!StringUtil.isEmpty(enableObjectReuseOptValue) && enableObjectReuseOptValue.equalsIgnoreCase("true")) { env.getConfig().enableObjectReuse(); } DataSet<String[]> recordDataSet = FlinkUtil.readHiveRecords(isSequenceFile, env, inputPath, hiveTable, job); // read record from flat table // output: // 1, statistic // 2, field value of dict col // 3, min/max field value of not dict col DataSet<Tuple2<SelfDefineSortableKey, Text>> flatOutputDataSet = recordDataSet.mapPartition( new FlatOutputMapPartitionFunction(sConf, cubeName, segmentId, metaUrl, samplingPercent, bytesWrittenName, recordCounterName)); // repartition data, make each reducer handle only one col data or the statistic data DataSet<Tuple2<SelfDefineSortableKey, Text>> partitionDataSet = flatOutputDataSet .partitionCustom(new FactDistinctColumnPartitioner(cubeName, metaUrl, sConf), 0) .setParallelism(totalReducer); // multiple output result // 1, CFG_OUTPUT_COLUMN: field values of dict col, which will not be built in reducer, like globalDictCol // 2, CFG_OUTPUT_DICT: dictionary object built in reducer // 3, CFG_OUTPUT_STATISTICS: cube statistic: hll of cuboids ... // 4, CFG_OUTPUT_PARTITION: dimension value range(min,max) DataSet<Tuple2<String, Tuple3<Writable, Writable, String>>> outputDataSet = partitionDataSet .mapPartition(new MultiOutputMapPartitionFunction(sConf, cubeName, segmentId, metaUrl, samplingPercent)) .setParallelism(totalReducer); // make each reducer output to respective dir MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_COLUMN, SequenceFileOutputFormat.class, NullWritable.class, Text.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_STATISTICS, SequenceFileOutputFormat.class, LongWritable.class, BytesWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_PARTITION, TextOutputFormat.class, NullWritable.class, LongWritable.class); FileOutputFormat.setOutputPath(job, new Path(outputPath)); FileOutputFormat.setCompressOutput(job, false); // prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); outputDataSet.output(new HadoopMultipleOutputFormat(new LazyOutputFormat(), job)); JobExecutionResult jobExecutionResult = env.execute("Fact distinct columns for:" + cubeName + " segment " + segmentId); Map<String, Object> accumulatorResults = jobExecutionResult.getAllAccumulatorResults(); Long recordCount = (Long) accumulatorResults.get(recordCounterName); Long bytesWritten = (Long) accumulatorResults.get(bytesWrittenName); logger.info("Map input records={}", recordCount); logger.info("HDFS Read: {} HDFS Write", bytesWritten); logger.info("HDFS: Number of bytes written=" + FlinkBatchCubingJobBuilder2.getFileSize(outputPath, fs)); Map<String, String> counterMap = Maps.newHashMap(); counterMap.put(ExecutableConstants.SOURCE_RECORDS_COUNT, String.valueOf(recordCount)); counterMap.put(ExecutableConstants.SOURCE_RECORDS_SIZE, String.valueOf(bytesWritten)); // save counter to hdfs HadoopUtil.writeToSequenceFile(job.getConfiguration(), counterPath, counterMap); }
Example #19
Source File: SparkUHCDictionary.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String counterPath = optionsHelper.getOptionValue(OPTION_COUNTER_PATH); Class[] kryoClassArray = new Class[]{Class.forName("scala.reflect.ClassTag$$anon$1"), Class.forName("org.apache.kylin.engine.mr.steps.SelfDefineSortableKey")}; SparkConf conf = new SparkConf().setAppName("Build uhc dictionary with spark for:" + cubeName + " segment " + segmentId); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); try (JavaSparkContext sc = new JavaSparkContext(conf)) { sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(outputPath)); Configuration hadoopConf = sc.hadoopConfiguration(); hadoopConf.set("mapreduce.input.pathFilter.class", "org.apache.kylin.engine.mr.steps.filter.UHCDictPathFilter"); final SerializableConfiguration sConf = new SerializableConfiguration(hadoopConf); KylinConfig config = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); CubeManager cubeMgr = CubeManager.getInstance(config); CubeInstance cube = cubeMgr.getCube(cubeName); final Job job = Job.getInstance(sConf.get()); // calculate source record bytes size final LongAccumulator bytesWritten = sc.sc().longAccumulator(); String hdfsDir = sc.hadoopConfiguration().get(BatchConstants.CFG_GLOBAL_DICT_BASE_DIR); List<TblColRef> uhcColumns = cube.getDescriptor().getAllUHCColumns(); int reducerCount = uhcColumns.size(); if (reducerCount == 0) { return; } logger.info("RDD Output path: {}", outputPath); logger.info("getTotalReducerNum: {}", reducerCount); logger.info("counter path {}", counterPath); JavaPairRDD<String, String> wholeSequenceFileNames = null; for (TblColRef tblColRef : uhcColumns) { String columnPath = inputPath + "/" + tblColRef.getIdentity(); if (!HadoopUtil.getFileSystem(columnPath).exists(new Path(columnPath))) { continue; } if (wholeSequenceFileNames == null) { wholeSequenceFileNames = sc.wholeTextFiles(columnPath); } else { wholeSequenceFileNames = wholeSequenceFileNames.union(sc.wholeTextFiles(columnPath)); } } if (wholeSequenceFileNames == null) { logger.error("There're no sequence files at " + inputPath + " !"); return; } JavaPairRDD<String, Tuple3<Writable, Writable, String>> pairRDD = wholeSequenceFileNames.map(tuple -> tuple._1) .mapToPair(new InputPathAndFilterAddFunction2(config, uhcColumns)) .filter(tuple -> tuple._1 != -1) .reduceByKey((list1, list2) -> combineAllColumnDistinctValues(list1, list2)) .mapToPair(new ProcessUHCColumnValues(cubeName, config, hdfsDir, uhcColumns)); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); FileOutputFormat.setOutputPath(job, new Path(outputPath)); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, outputPath); //prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); MultipleOutputsRDD multipleOutputsRDD = MultipleOutputsRDD.rddToMultipleOutputsRDD(pairRDD); multipleOutputsRDD.saveAsNewAPIHadoopDatasetWithMultipleOutputs(job.getConfiguration()); logger.info("Map input records={}", reducerCount); logger.info("HDFS Read: {} HDFS Write", bytesWritten.value()); Map<String, String> counterMap = Maps.newHashMap(); counterMap.put(ExecutableConstants.SOURCE_RECORDS_COUNT, String.valueOf(reducerCount)); counterMap.put(ExecutableConstants.SOURCE_RECORDS_SIZE, String.valueOf(bytesWritten.value())); // save counter to hdfs HadoopUtil.writeToSequenceFile(sc.hadoopConfiguration(), counterPath, counterMap); HadoopUtil.deleteHDFSMeta(metaUrl); } }
Example #20
Source File: IServer.java From ytk-mp4j with MIT License | votes |
public ArrayPrimitiveWritable arrayAllReduce(ArrayPrimitiveWritable byteSerialArray, int rank) throws Mp4jException;
Example #21
Source File: IServer.java From ytk-mp4j with MIT License | votes |
public ArrayPrimitiveWritable primitiveArrayAllReduce(ArrayPrimitiveWritable arrayPrimitiveWritable, int rank) throws Mp4jException;