org.apache.flink.streaming.connectors.kafka.testutils.Tuple2FlinkPartitioner Java Examples
The following examples show how to use
org.apache.flink.streaming.connectors.kafka.testutils.Tuple2FlinkPartitioner.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: KafkaConsumerTestBase.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
protected String writeSequence( String baseTopicName, final int numElements, final int parallelism, final int replicationFactor) throws Exception { LOG.info("\n===================================\n" + "== Writing sequence of " + numElements + " into " + baseTopicName + " with p=" + parallelism + "\n" + "==================================="); final TypeInformation<Tuple2<Integer, Integer>> resultType = TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}); final KeyedSerializationSchema<Tuple2<Integer, Integer>> serSchema = new KeyedSerializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final KafkaDeserializationSchema<Tuple2<Integer, Integer>> deserSchema = new KafkaDeserializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final int maxNumAttempts = 10; for (int attempt = 1; attempt <= maxNumAttempts; attempt++) { final String topicName = baseTopicName + '-' + attempt; LOG.info("Writing attempt #" + attempt); // -------- Write the Sequence -------- createTestTopic(topicName, parallelism, replicationFactor); StreamExecutionEnvironment writeEnv = StreamExecutionEnvironment.getExecutionEnvironment(); writeEnv.getConfig().setRestartStrategy(RestartStrategies.noRestart()); writeEnv.getConfig().disableSysoutLogging(); DataStream<Tuple2<Integer, Integer>> stream = writeEnv.addSource(new RichParallelSourceFunction<Tuple2<Integer, Integer>>() { private boolean running = true; @Override public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception { int cnt = 0; int partition = getRuntimeContext().getIndexOfThisSubtask(); while (running && cnt < numElements) { ctx.collect(new Tuple2<>(partition, cnt)); cnt++; } } @Override public void cancel() { running = false; } }).setParallelism(parallelism); // the producer must not produce duplicates Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings); producerProperties.setProperty("retries", "0"); producerProperties.putAll(secureProps); kafkaServer.produceIntoKafka(stream, topicName, serSchema, producerProperties, new Tuple2FlinkPartitioner(parallelism)) .setParallelism(parallelism); try { writeEnv.execute("Write sequence"); } catch (Exception e) { LOG.error("Write attempt failed, trying again", e); deleteTestTopic(topicName); waitUntilNoJobIsRunning(client); continue; } LOG.info("Finished writing sequence"); // -------- Validate the Sequence -------- // we need to validate the sequence, because kafka's producers are not exactly once LOG.info("Validating sequence"); waitUntilNoJobIsRunning(client); if (validateSequence(topicName, parallelism, deserSchema, numElements)) { // everything is good! return topicName; } else { deleteTestTopic(topicName); // fall through the loop } } throw new Exception("Could not write a valid sequence to Kafka after " + maxNumAttempts + " attempts"); }
Example #2
Source File: KafkaConsumerTestBase.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
protected void writeAppendSequence( String topicName, final int originalNumElements, final int numElementsToAppend, final int parallelism) throws Exception { LOG.info("\n===================================\n" + "== Appending sequence of " + numElementsToAppend + " into " + topicName + "==================================="); final TypeInformation<Tuple2<Integer, Integer>> resultType = TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}); final KeyedSerializationSchema<Tuple2<Integer, Integer>> serSchema = new KeyedSerializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final KafkaDeserializationSchema<Tuple2<Integer, Integer>> deserSchema = new KafkaDeserializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); // -------- Write the append sequence -------- StreamExecutionEnvironment writeEnv = StreamExecutionEnvironment.getExecutionEnvironment(); writeEnv.getConfig().setRestartStrategy(RestartStrategies.noRestart()); writeEnv.getConfig().disableSysoutLogging(); DataStream<Tuple2<Integer, Integer>> stream = writeEnv.addSource(new RichParallelSourceFunction<Tuple2<Integer, Integer>>() { private boolean running = true; @Override public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception { int cnt = originalNumElements; int partition = getRuntimeContext().getIndexOfThisSubtask(); while (running && cnt < numElementsToAppend + originalNumElements) { ctx.collect(new Tuple2<>(partition, cnt)); cnt++; } } @Override public void cancel() { running = false; } }).setParallelism(parallelism); // the producer must not produce duplicates Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings); producerProperties.setProperty("retries", "0"); producerProperties.putAll(secureProps); kafkaServer.produceIntoKafka(stream, topicName, serSchema, producerProperties, new Tuple2FlinkPartitioner(parallelism)) .setParallelism(parallelism); try { writeEnv.execute("Write sequence"); } catch (Exception e) { throw new Exception("Failed to append sequence to Kafka; append job failed.", e); } LOG.info("Finished writing append sequence"); // we need to validate the sequence, because kafka's producers are not exactly once LOG.info("Validating sequence"); while (!getRunningJobs(client).isEmpty()){ Thread.sleep(50); } if (!validateSequence(topicName, parallelism, deserSchema, originalNumElements + numElementsToAppend)) { throw new Exception("Could not append a valid sequence to Kafka."); } }
Example #3
Source File: KafkaConsumerTestBase.java From flink with Apache License 2.0 | 4 votes |
protected String writeSequence( String baseTopicName, final int numElements, final int parallelism, final int replicationFactor) throws Exception { LOG.info("\n===================================\n" + "== Writing sequence of " + numElements + " into " + baseTopicName + " with p=" + parallelism + "\n" + "==================================="); final TypeInformation<Tuple2<Integer, Integer>> resultType = TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}); final KeyedSerializationSchema<Tuple2<Integer, Integer>> serSchema = new KeyedSerializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final KafkaDeserializationSchema<Tuple2<Integer, Integer>> deserSchema = new KafkaDeserializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final int maxNumAttempts = 10; for (int attempt = 1; attempt <= maxNumAttempts; attempt++) { final String topicName = baseTopicName + '-' + attempt; LOG.info("Writing attempt #" + attempt); // -------- Write the Sequence -------- createTestTopic(topicName, parallelism, replicationFactor); StreamExecutionEnvironment writeEnv = StreamExecutionEnvironment.getExecutionEnvironment(); writeEnv.getConfig().setRestartStrategy(RestartStrategies.noRestart()); writeEnv.getConfig().disableSysoutLogging(); DataStream<Tuple2<Integer, Integer>> stream = writeEnv.addSource(new RichParallelSourceFunction<Tuple2<Integer, Integer>>() { private boolean running = true; @Override public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception { int cnt = 0; int partition = getRuntimeContext().getIndexOfThisSubtask(); while (running && cnt < numElements) { ctx.collect(new Tuple2<>(partition, cnt)); cnt++; } } @Override public void cancel() { running = false; } }).setParallelism(parallelism); // the producer must not produce duplicates Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings); producerProperties.setProperty("retries", "0"); producerProperties.putAll(secureProps); kafkaServer.produceIntoKafka(stream, topicName, serSchema, producerProperties, new Tuple2FlinkPartitioner(parallelism)) .setParallelism(parallelism); try { writeEnv.execute("Write sequence"); } catch (Exception e) { LOG.error("Write attempt failed, trying again", e); deleteTestTopic(topicName); waitUntilNoJobIsRunning(client); continue; } LOG.info("Finished writing sequence"); // -------- Validate the Sequence -------- // we need to validate the sequence, because kafka's producers are not exactly once LOG.info("Validating sequence"); waitUntilNoJobIsRunning(client); if (validateSequence(topicName, parallelism, deserSchema, numElements)) { // everything is good! return topicName; } else { deleteTestTopic(topicName); // fall through the loop } } throw new Exception("Could not write a valid sequence to Kafka after " + maxNumAttempts + " attempts"); }
Example #4
Source File: KafkaConsumerTestBase.java From flink with Apache License 2.0 | 4 votes |
protected void writeAppendSequence( String topicName, final int originalNumElements, final int numElementsToAppend, final int parallelism) throws Exception { LOG.info("\n===================================\n" + "== Appending sequence of " + numElementsToAppend + " into " + topicName + "==================================="); final TypeInformation<Tuple2<Integer, Integer>> resultType = TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}); final KeyedSerializationSchema<Tuple2<Integer, Integer>> serSchema = new KeyedSerializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final KafkaDeserializationSchema<Tuple2<Integer, Integer>> deserSchema = new KafkaDeserializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); // -------- Write the append sequence -------- StreamExecutionEnvironment writeEnv = StreamExecutionEnvironment.getExecutionEnvironment(); writeEnv.getConfig().setRestartStrategy(RestartStrategies.noRestart()); writeEnv.getConfig().disableSysoutLogging(); DataStream<Tuple2<Integer, Integer>> stream = writeEnv.addSource(new RichParallelSourceFunction<Tuple2<Integer, Integer>>() { private boolean running = true; @Override public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception { int cnt = originalNumElements; int partition = getRuntimeContext().getIndexOfThisSubtask(); while (running && cnt < numElementsToAppend + originalNumElements) { ctx.collect(new Tuple2<>(partition, cnt)); cnt++; } } @Override public void cancel() { running = false; } }).setParallelism(parallelism); // the producer must not produce duplicates Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings); producerProperties.setProperty("retries", "0"); producerProperties.putAll(secureProps); kafkaServer.produceIntoKafka(stream, topicName, serSchema, producerProperties, new Tuple2FlinkPartitioner(parallelism)) .setParallelism(parallelism); try { writeEnv.execute("Write sequence"); } catch (Exception e) { throw new Exception("Failed to append sequence to Kafka; append job failed.", e); } LOG.info("Finished writing append sequence"); // we need to validate the sequence, because kafka's producers are not exactly once LOG.info("Validating sequence"); while (!getRunningJobs(client).isEmpty()){ Thread.sleep(50); } if (!validateSequence(topicName, parallelism, deserSchema, originalNumElements + numElementsToAppend)) { throw new Exception("Could not append a valid sequence to Kafka."); } }
Example #5
Source File: KafkaConsumerTestBase.java From flink with Apache License 2.0 | 4 votes |
protected String writeSequence( String baseTopicName, final int numElements, final int parallelism, final int replicationFactor) throws Exception { LOG.info("\n===================================\n" + "== Writing sequence of " + numElements + " into " + baseTopicName + " with p=" + parallelism + "\n" + "==================================="); final TypeInformation<Tuple2<Integer, Integer>> resultType = TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}); final SerializationSchema<Tuple2<Integer, Integer>> serSchema = new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig()); final KafkaDeserializationSchema<Tuple2<Integer, Integer>> deserSchema = new KafkaDeserializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); final int maxNumAttempts = 10; for (int attempt = 1; attempt <= maxNumAttempts; attempt++) { final String topicName = baseTopicName + '-' + attempt; LOG.info("Writing attempt #" + attempt); // -------- Write the Sequence -------- createTestTopic(topicName, parallelism, replicationFactor); StreamExecutionEnvironment writeEnv = StreamExecutionEnvironment.getExecutionEnvironment(); writeEnv.getConfig().setRestartStrategy(RestartStrategies.noRestart()); DataStream<Tuple2<Integer, Integer>> stream = writeEnv.addSource(new RichParallelSourceFunction<Tuple2<Integer, Integer>>() { private boolean running = true; @Override public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception { int cnt = 0; int partition = getRuntimeContext().getIndexOfThisSubtask(); while (running && cnt < numElements) { ctx.collect(new Tuple2<>(partition, cnt)); cnt++; } } @Override public void cancel() { running = false; } }).setParallelism(parallelism); // the producer must not produce duplicates Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings); producerProperties.setProperty("retries", "0"); producerProperties.putAll(secureProps); kafkaServer.produceIntoKafka(stream, topicName, serSchema, producerProperties, new Tuple2FlinkPartitioner(parallelism)) .setParallelism(parallelism); try { writeEnv.execute("Write sequence"); } catch (Exception e) { LOG.error("Write attempt failed, trying again", e); deleteTestTopic(topicName); waitUntilNoJobIsRunning(client); continue; } LOG.info("Finished writing sequence"); // -------- Validate the Sequence -------- // we need to validate the sequence, because kafka's producers are not exactly once LOG.info("Validating sequence"); waitUntilNoJobIsRunning(client); if (validateSequence(topicName, parallelism, deserSchema, numElements)) { // everything is good! return topicName; } else { deleteTestTopic(topicName); // fall through the loop } } throw new Exception("Could not write a valid sequence to Kafka after " + maxNumAttempts + " attempts"); }
Example #6
Source File: KafkaConsumerTestBase.java From flink with Apache License 2.0 | 4 votes |
protected void writeAppendSequence( String topicName, final int originalNumElements, final int numElementsToAppend, final int parallelism) throws Exception { LOG.info("\n===================================\n" + "== Appending sequence of " + numElementsToAppend + " into " + topicName + "==================================="); final TypeInformation<Tuple2<Integer, Integer>> resultType = TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}); final SerializationSchema<Tuple2<Integer, Integer>> serSchema = new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig()); final KafkaDeserializationSchema<Tuple2<Integer, Integer>> deserSchema = new KafkaDeserializationSchemaWrapper<>( new TypeInformationSerializationSchema<>(resultType, new ExecutionConfig())); // -------- Write the append sequence -------- StreamExecutionEnvironment writeEnv = StreamExecutionEnvironment.getExecutionEnvironment(); writeEnv.getConfig().setRestartStrategy(RestartStrategies.noRestart()); DataStream<Tuple2<Integer, Integer>> stream = writeEnv.addSource(new RichParallelSourceFunction<Tuple2<Integer, Integer>>() { private boolean running = true; @Override public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception { int cnt = originalNumElements; int partition = getRuntimeContext().getIndexOfThisSubtask(); while (running && cnt < numElementsToAppend + originalNumElements) { ctx.collect(new Tuple2<>(partition, cnt)); cnt++; } } @Override public void cancel() { running = false; } }).setParallelism(parallelism); // the producer must not produce duplicates Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings); producerProperties.setProperty("retries", "0"); producerProperties.putAll(secureProps); kafkaServer.produceIntoKafka(stream, topicName, serSchema, producerProperties, new Tuple2FlinkPartitioner(parallelism)) .setParallelism(parallelism); try { writeEnv.execute("Write sequence"); } catch (Exception e) { throw new Exception("Failed to append sequence to Kafka; append job failed.", e); } LOG.info("Finished writing append sequence"); // we need to validate the sequence, because kafka's producers are not exactly once LOG.info("Validating sequence"); while (!getRunningJobs(client).isEmpty()){ Thread.sleep(50); } if (!validateSequence(topicName, parallelism, deserSchema, originalNumElements + numElementsToAppend)) { throw new Exception("Could not append a valid sequence to Kafka."); } }