org.nd4j.linalg.learning.AdamUpdater Java Examples
The following examples show how to use
org.nd4j.linalg.learning.AdamUpdater.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: AdamLearnerTestCase.java From jstarcraft-ai with Apache License 2.0 | 5 votes |
@Override protected GradientUpdater<?> getOldFunction(long[] shape) { Adam configuration = new Adam(); GradientUpdater<?> oldFunction = new AdamUpdater(configuration); int length = (int) (shape[0] * configuration.stateSize(shape[1])); INDArray view = Nd4j.zeros(length); oldFunction.setStateViewArray(view, shape, 'c', true); return oldFunction; }
Example #2
Source File: NeuralStyleTransfer.java From Java-Machine-Learning-for-Computer-Vision with MIT License | 5 votes |
private AdamUpdater createADAMUpdater() { AdamUpdater adamUpdater = new AdamUpdater(new Adam(LEARNING_RATE, BETA_MOMENTUM, BETA2_MOMENTUM, EPSILON)); adamUpdater.setStateViewArray(Nd4j.zeros(1, 2 * CHANNELS * WIDTH * HEIGHT), new int[]{1, CHANNELS, HEIGHT, WIDTH}, 'c', true); return adamUpdater; }
Example #3
Source File: NeuralStyleTransfer.java From dl4j-tutorials with MIT License | 5 votes |
private void transferStyle() throws IOException { ComputationGraph vgg16FineTune = loadModel(); INDArray content = loadImage(CONTENT_FILE); INDArray style = loadImage(STYLE_FILE); INDArray combination = createCombinationImage(); Map<String, INDArray> activationsContentMap = vgg16FineTune.feedForward(content, true); Map<String, INDArray> activationsStyleMap = vgg16FineTune.feedForward(style, true); HashMap<String, INDArray> activationsStyleGramMap = buildStyleGramValues(activationsStyleMap); AdamUpdater adamUpdater = createADAMUpdater(); for (int iteration = 0; iteration < ITERATIONS; iteration++) { log.info("iteration " + iteration); INDArray[] input = new INDArray[] { combination }; Map<String, INDArray> activationsCombMap = vgg16FineTune.feedForward(input, true, false); INDArray styleBackProb = backPropagateStyles(vgg16FineTune, activationsStyleGramMap, activationsCombMap); INDArray backPropContent = backPropagateContent(vgg16FineTune, activationsContentMap, activationsCombMap); INDArray backPropAllValues = backPropContent.muli(ALPHA).addi(styleBackProb.muli(BETA)); adamUpdater.applyUpdater(backPropAllValues, iteration, 0); combination.subi(backPropAllValues); log.info("Total Loss: " + totalLoss(activationsStyleMap, activationsCombMap, activationsContentMap)); if (iteration % SAVE_IMAGE_CHECKPOINT == 0) { //save image can be found at target/classes/styletransfer/out saveImage(combination.dup(), iteration); } } }
Example #4
Source File: NeuralStyleTransfer.java From dl4j-tutorials with MIT License | 5 votes |
private AdamUpdater createADAMUpdater() { AdamUpdater adamUpdater = new AdamUpdater(new Adam(LEARNING_RATE, BETA_MOMENTUM, BETA2_MOMENTUM, EPSILON)); adamUpdater.setStateViewArray(Nd4j.zeros(1, 2 * CHANNELS * WIDTH * HEIGHT), new long[]{1, CHANNELS, HEIGHT, WIDTH}, 'c', true); return adamUpdater; }
Example #5
Source File: Adam.java From nd4j with Apache License 2.0 | 5 votes |
@Override public GradientUpdater instantiate(INDArray viewArray, boolean initializeViewArray) { AdamUpdater u = new AdamUpdater(this); long[] gradientShape = viewArray.shape(); gradientShape = Arrays.copyOf(gradientShape, gradientShape.length); gradientShape[1] /= 2; u.setStateViewArray(viewArray, gradientShape, viewArray.ordering(), initializeViewArray); return u; }
Example #6
Source File: Adam.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public GradientUpdater instantiate(INDArray viewArray, boolean initializeViewArray) { AdamUpdater u = new AdamUpdater(this); long[] gradientShape = viewArray.shape(); gradientShape = Arrays.copyOf(gradientShape, gradientShape.length); gradientShape[1] /= 2; u.setStateViewArray(viewArray, gradientShape, viewArray.ordering(), initializeViewArray); return u; }
Example #7
Source File: Adam.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public GradientUpdater instantiate(Map<String, INDArray> updaterState, boolean initializeStateArrays) { AdamUpdater u = new AdamUpdater(this); u.setState(updaterState, initializeStateArrays); return u; }