org.apache.commons.math.exception.NoBracketingException Java Examples
The following examples show how to use
org.apache.commons.math.exception.NoBracketingException.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 5 votes |
/** * This method attempts to find two values a and b satisfying <ul> * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li> * <li> <code> f(a) * f(b) <= 0 </code> </li> * </ul> * If f is continuous on <code>[a,b],</code> this means that <code>a</code> * and <code>b</code> bracket a root of f. * <p> * The algorithm starts by setting * <code>a := initial -1; b := initial +1,</code> examines the value of the * function at <code>a</code> and <code>b</code> and keeps moving * the endpoints out by one unit each time through a loop that terminates * when one of the following happens: <ul> * <li> <code> f(a) * f(b) <= 0 </code> -- success!</li> * <li> <code> a = lower </code> and <code> b = upper</code> * -- ConvergenceException </li> * <li> <code> maximumIterations</code> iterations elapse * -- ConvergenceException </li></ul></p> * * @param function Function. * @param initial Initial midpoint of interval being expanded to * bracket a root. * @param lowerBound Lower bound (a is never lower than this value). * @param upperBound Upper bound (b never is greater than this * value). * @param maximumIterations Maximum number of iterations to perform * @return a two element array holding a and b. * @throws NoBracketingException if the algorithm fails to find a and b * satisfying the desired conditions. * @throws IllegalArgumentException if function is null, maximumIterations * is not positive, or initial is not between lowerBound and upperBound. */ public static double[] bracket(UnivariateRealFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } if (maximumIterations <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.INVALID_MAX_ITERATIONS, maximumIterations); } verifySequence(lowerBound, initial, upperBound); double a = initial; double b = initial; double fa; double fb; int numIterations = 0; do { a = FastMath.max(a - 1.0, lowerBound); b = FastMath.min(b + 1.0, upperBound); fa = function.value(a); fb = function.value(b); ++numIterations; } while ((fa * fb > 0.0) && (numIterations < maximumIterations) && ((a > lowerBound) || (b < upperBound))); if (fa * fb > 0.0) { throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING, a, b, fa, fb, numIterations, maximumIterations, initial, lowerBound, upperBound); } return new double[] {a, b}; }
Example #2
Source File: LaguerreSolver.java From astor with GNU General Public License v2.0 | 5 votes |
/** * {@inheritDoc} */ @Override public double doSolve() { double min = getMin(); double max = getMax(); double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return laguerre(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return laguerre(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); }
Example #3
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Check that the endpoints specify an interval and the end points * bracket a root. * * @param function Function. * @param lower Lower endpoint. * @param upper Upper endpoint. * @throws NoBracketingException if function has the same sign at the * endpoints. */ public static void verifyBracketing(UnivariateRealFunction function, final double lower, final double upper) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } verifyInterval(lower, upper); if (!isBracketing(function, lower, upper)) { throw new NoBracketingException(lower, upper, function.value(lower), function.value(upper)); } }
Example #4
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 5 votes |
/** * This method attempts to find two values a and b satisfying <ul> * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li> * <li> <code> f(a) * f(b) <= 0 </code> </li> * </ul> * If f is continuous on <code>[a,b],</code> this means that <code>a</code> * and <code>b</code> bracket a root of f. * <p> * The algorithm starts by setting * <code>a := initial -1; b := initial +1,</code> examines the value of the * function at <code>a</code> and <code>b</code> and keeps moving * the endpoints out by one unit each time through a loop that terminates * when one of the following happens: <ul> * <li> <code> f(a) * f(b) <= 0 </code> -- success!</li> * <li> <code> a = lower </code> and <code> b = upper</code> * -- ConvergenceException </li> * <li> <code> maximumIterations</code> iterations elapse * -- ConvergenceException </li></ul></p> * * @param function Function. * @param initial Initial midpoint of interval being expanded to * bracket a root. * @param lowerBound Lower bound (a is never lower than this value). * @param upperBound Upper bound (b never is greater than this * value). * @param maximumIterations Maximum number of iterations to perform * @return a two element array holding a and b. * @throws NoBracketingException if the algorithm fails to find a and b * satisfying the desired conditions. * @throws IllegalArgumentException if function is null, maximumIterations * is not positive, or initial is not between lowerBound and upperBound. */ public static double[] bracket(UnivariateRealFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } if (maximumIterations <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.INVALID_MAX_ITERATIONS, maximumIterations); } verifySequence(lowerBound, initial, upperBound); double a = initial; double b = initial; double fa; double fb; int numIterations = 0; do { a = FastMath.max(a - 1.0, lowerBound); b = FastMath.min(b + 1.0, upperBound); fa = function.value(a); fb = function.value(b); ++numIterations; } while ((fa * fb > 0.0) && (numIterations < maximumIterations) && ((a > lowerBound) || (b < upperBound))); if (fa * fb > 0.0) { throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING, a, b, fa, fb, numIterations, maximumIterations, initial, lowerBound, upperBound); } return new double[] {a, b}; }
Example #5
Source File: BrentSolver.java From astor with GNU General Public License v2.0 | 5 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { double min = getMin(); double max = getMax(); final double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return brent(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return brent(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); }
Example #6
Source File: LaguerreSolver.java From astor with GNU General Public License v2.0 | 5 votes |
/** * {@inheritDoc} */ @Override public double doSolve() { double min = getMin(); double max = getMax(); double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return laguerre(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return laguerre(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); }
Example #7
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Check that the endpoints specify an interval and the end points * bracket a root. * * @param function Function. * @param lower Lower endpoint. * @param upper Upper endpoint. * @throws NoBracketingException if function has the same sign at the * endpoints. */ public static void verifyBracketing(UnivariateRealFunction function, final double lower, final double upper) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } verifyInterval(lower, upper); if (!isBracketing(function, lower, upper)) { throw new NoBracketingException(lower, upper, function.value(lower), function.value(upper)); } }
Example #8
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 5 votes |
/** * This method attempts to find two values a and b satisfying <ul> * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li> * <li> <code> f(a) * f(b) <= 0 </code> </li> * </ul> * If f is continuous on <code>[a,b],</code> this means that <code>a</code> * and <code>b</code> bracket a root of f. * <p> * The algorithm starts by setting * <code>a := initial -1; b := initial +1,</code> examines the value of the * function at <code>a</code> and <code>b</code> and keeps moving * the endpoints out by one unit each time through a loop that terminates * when one of the following happens: <ul> * <li> <code> f(a) * f(b) <= 0 </code> -- success!</li> * <li> <code> a = lower </code> and <code> b = upper</code> * -- ConvergenceException </li> * <li> <code> maximumIterations</code> iterations elapse * -- ConvergenceException </li></ul></p> * * @param function Function. * @param initial Initial midpoint of interval being expanded to * bracket a root. * @param lowerBound Lower bound (a is never lower than this value). * @param upperBound Upper bound (b never is greater than this * value). * @param maximumIterations Maximum number of iterations to perform * @return a two element array holding a and b. * @throws NoBracketingException if the algorithm fails to find a and b * satisfying the desired conditions. * @throws IllegalArgumentException if function is null, maximumIterations * is not positive, or initial is not between lowerBound and upperBound. */ public static double[] bracket(UnivariateRealFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } if (maximumIterations <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.INVALID_MAX_ITERATIONS, maximumIterations); } verifySequence(lowerBound, initial, upperBound); double a = initial; double b = initial; double fa; double fb; int numIterations = 0; do { a = FastMath.max(a - 1.0, lowerBound); b = FastMath.min(b + 1.0, upperBound); fa = function.value(a); fb = function.value(b); ++numIterations; } while ((fa * fb > 0.0) && (numIterations < maximumIterations) && ((a > lowerBound) || (b < upperBound))); if (fa * fb > 0.0) { throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING, a, b, fa, fb, numIterations, maximumIterations, initial, lowerBound, upperBound); } return new double[] {a, b}; }
Example #9
Source File: BrentSolver.java From astor with GNU General Public License v2.0 | 5 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { double min = getMin(); double max = getMax(); final double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return brent(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return brent(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); }
Example #10
Source File: LaguerreSolver.java From astor with GNU General Public License v2.0 | 5 votes |
/** * {@inheritDoc} */ @Override public double doSolve() { double min = getMin(); double max = getMax(); double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return laguerre(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return laguerre(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); }
Example #11
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Check that the endpoints specify an interval and the function takes * opposite signs at the endpoints. * * @param function Function. * @param lower Lower endpoint. * @param upper Upper endpoint. * @throws NoBracketingException if function has the same sign at the * endpoints. */ public static void verifyBracketing(UnivariateRealFunction function, final double lower, final double upper) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } verifyInterval(lower, upper); if (!isBracketing(function, lower, upper)) { throw new NoBracketingException(lower, upper, function.value(lower), function.value(upper)); } }
Example #12
Source File: BrentSolver.java From astor with GNU General Public License v2.0 | 5 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { double min = getMin(); double max = getMax(); final double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return brent(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return brent(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); }
Example #13
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 4 votes |
/** Force a root found by a non-bracketing solver to lie on a specified side, * as if the solver was a bracketing one. * @param maxEval maximal number of new evaluations of the function * (evaluations already done for finding the root should have already been subtracted * from this number) * @param f function to solve * @param bracketing bracketing solver to use for shifting the root * @param baseRoot original root found by a previous non-bracketing solver * @param min minimal bound of the search interval * @param max maximal bound of the search interval * @param allowedSolution the kind of solutions that the root-finding algorithm may * accept as solutions. * @return a root approximation, on the specified side of the exact root */ public static double forceSide(final int maxEval, final UnivariateRealFunction f, final BracketedUnivariateRealSolver<UnivariateRealFunction> bracketing, final double baseRoot, final double min, final double max, final AllowedSolution allowedSolution) { if (allowedSolution == AllowedSolution.ANY_SIDE) { // no further bracketing required return baseRoot; } // find a very small interval bracketing the root final double step = FastMath.max(bracketing.getAbsoluteAccuracy(), FastMath.abs(baseRoot * bracketing.getRelativeAccuracy())); double xLo = FastMath.max(min, baseRoot - step); double fLo = f.value(xLo); double xHi = FastMath.min(max, baseRoot + step); double fHi = f.value(xHi); int remainingEval = maxEval - 2; while (remainingEval > 0) { if ((fLo >= 0 && fHi <= 0) || (fLo <= 0 && fHi >= 0)) { // compute the root on the selected side return bracketing.solve(remainingEval, f, xLo, xHi, baseRoot, allowedSolution); } // try increasing the interval boolean changeLo = false; boolean changeHi = false; if (fLo < fHi) { // increasing function if (fLo >= 0) { changeLo = true; } else { changeHi = true; } } else if (fLo > fHi) { // decreasing function if (fLo <= 0) { changeLo = true; } else { changeHi = true; } } else { // unknown variation changeLo = true; changeHi = true; } // update the lower bound if (changeLo) { xLo = FastMath.max(min, xLo - step); fLo = f.value(xLo); remainingEval--; } // update the higher bound if (changeHi) { xHi = FastMath.min(max, xHi + step); fHi = f.value(xHi); remainingEval--; } } throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING, xLo, xHi, fLo, fHi, maxEval - remainingEval, maxEval, baseRoot, min, max); }
Example #14
Source File: MullerSolver2.java From astor with GNU General Public License v2.0 | 4 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { final double min = getMin(); final double max = getMax(); verifyInterval(min, max); final double relativeAccuracy = getRelativeAccuracy(); final double absoluteAccuracy = getAbsoluteAccuracy(); final double functionValueAccuracy = getFunctionValueAccuracy(); // x2 is the last root approximation // x is the new approximation and new x2 for next round // x0 < x1 < x2 does not hold here double x0 = min; double y0 = computeObjectiveValue(x0); if (FastMath.abs(y0) < functionValueAccuracy) { return x0; } double x1 = max; double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) < functionValueAccuracy) { return x1; } if(y0 * y1 > 0) { throw new NoBracketingException(x0, x1, y0, y1); } double x2 = 0.5 * (x0 + x1); double y2 = computeObjectiveValue(x2); double oldx = Double.POSITIVE_INFINITY; while (true) { // quadratic interpolation through x0, x1, x2 final double q = (x2 - x1) / (x1 - x0); final double a = q * (y2 - (1 + q) * y1 + q * y0); final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0; final double c = (1 + q) * y2; final double delta = b * b - 4 * a * c; double x; final double denominator; if (delta >= 0.0) { // choose a denominator larger in magnitude double dplus = b + FastMath.sqrt(delta); double dminus = b - FastMath.sqrt(delta); denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus; } else { // take the modulus of (B +/- FastMath.sqrt(delta)) denominator = FastMath.sqrt(b * b - delta); } if (denominator != 0) { x = x2 - 2.0 * c * (x2 - x1) / denominator; // perturb x if it exactly coincides with x1 or x2 // the equality tests here are intentional while (x == x1 || x == x2) { x += absoluteAccuracy; } } else { // extremely rare case, get a random number to skip it x = min + FastMath.random() * (max - min); oldx = Double.POSITIVE_INFINITY; } final double y = computeObjectiveValue(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance || FastMath.abs(y) <= functionValueAccuracy) { return x; } // prepare the next iteration x0 = x1; y0 = y1; x1 = x2; y1 = y2; x2 = x; y2 = y; oldx = x; } }
Example #15
Source File: MullerSolver2.java From astor with GNU General Public License v2.0 | 4 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { final double min = getMin(); final double max = getMax(); verifyInterval(min, max); final double relativeAccuracy = getRelativeAccuracy(); final double absoluteAccuracy = getAbsoluteAccuracy(); final double functionValueAccuracy = getFunctionValueAccuracy(); // x2 is the last root approximation // x is the new approximation and new x2 for next round // x0 < x1 < x2 does not hold here double x0 = min; double y0 = computeObjectiveValue(x0); if (FastMath.abs(y0) < functionValueAccuracy) { return x0; } double x1 = max; double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) < functionValueAccuracy) { return x1; } if(y0 * y1 > 0) { throw new NoBracketingException(x0, x1, y0, y1); } double x2 = 0.5 * (x0 + x1); double y2 = computeObjectiveValue(x2); double oldx = Double.POSITIVE_INFINITY; while (true) { // quadratic interpolation through x0, x1, x2 final double q = (x2 - x1) / (x1 - x0); final double a = q * (y2 - (1 + q) * y1 + q * y0); final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0; final double c = (1 + q) * y2; final double delta = b * b - 4 * a * c; double x; final double denominator; if (delta >= 0.0) { // choose a denominator larger in magnitude double dplus = b + FastMath.sqrt(delta); double dminus = b - FastMath.sqrt(delta); denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus; } else { // take the modulus of (B +/- FastMath.sqrt(delta)) denominator = FastMath.sqrt(b * b - delta); } if (denominator != 0) { x = x2 - 2.0 * c * (x2 - x1) / denominator; // perturb x if it exactly coincides with x1 or x2 // the equality tests here are intentional while (x == x1 || x == x2) { x += absoluteAccuracy; } } else { // extremely rare case, get a random number to skip it x = min + FastMath.random() * (max - min); oldx = Double.POSITIVE_INFINITY; } final double y = computeObjectiveValue(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance || FastMath.abs(y) <= functionValueAccuracy) { return x; } // prepare the next iteration x0 = x1; y0 = y1; x1 = x2; y1 = y2; x2 = x; y2 = y; oldx = x; } }
Example #16
Source File: SecantSolver.java From astor with GNU General Public License v2.0 | 4 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { double min = getMin(); double max = getMax(); verifyInterval(min, max); final double functionValueAccuracy = getFunctionValueAccuracy(); // Index 0 is the old approximation for the root. // Index 1 is the last calculated approximation for the root. // Index 2 is a bracket for the root with respect to x0. // OldDelta is the length of the bracketing interval of the last // iteration. double x0 = min; double x1 = max; double y0 = computeObjectiveValue(x0); // return the first endpoint if it is good enough if (FastMath.abs(y0) <= functionValueAccuracy) { return x0; } // return the second endpoint if it is good enough double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) <= functionValueAccuracy) { return x1; } // Verify bracketing if (y0 * y1 >= 0) { throw new NoBracketingException(min, max, y0, y1); } final double absoluteAccuracy = getAbsoluteAccuracy(); final double relativeAccuracy = getRelativeAccuracy(); double x2 = x0; double y2 = y0; double oldDelta = x2 - x1; while (true) { if (FastMath.abs(y2) < FastMath.abs(y1)) { x0 = x1; x1 = x2; x2 = x0; y0 = y1; y1 = y2; y2 = y0; } if (FastMath.abs(y1) <= functionValueAccuracy) { return x1; } if (FastMath.abs(oldDelta) < FastMath.max(relativeAccuracy * FastMath.abs(x1), absoluteAccuracy)) { return x1; } double delta; if (FastMath.abs(y1) > FastMath.abs(y0)) { // Function value increased in last iteration. Force bisection. delta = 0.5 * oldDelta; } else { delta = (x0 - x1) / (1 - y0 / y1); if (delta / oldDelta > 1) { // New approximation falls outside bracket. // Fall back to bisection. delta = 0.5 * oldDelta; } } x0 = x1; y0 = y1; x1 = x1 + delta; y1 = computeObjectiveValue(x1); if ((y1 > 0) == (y2 > 0)) { // New bracket is (x0,x1). x2 = x0; y2 = y0; } oldDelta = x2 - x1; } }
Example #17
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 4 votes |
/** Force a root found by a non-bracketing solver to lie on a specified side, * as if the solver was a bracketing one. * @param maxEval maximal number of new evaluations of the function * (evaluations already done for finding the root should have already been subtracted * from this number) * @param f function to solve * @param bracketing bracketing solver to use for shifting the root * @param baseRoot original root found by a previous non-bracketing solver * @param min minimal bound of the search interval * @param max maximal bound of the search interval * @param allowedSolution the kind of solutions that the root-finding algorithm may * accept as solutions. * @return a root approximation, on the specified side of the exact root */ public static double forceSide(final int maxEval, final UnivariateRealFunction f, final BracketedUnivariateRealSolver<UnivariateRealFunction> bracketing, final double baseRoot, final double min, final double max, final AllowedSolution allowedSolution) { if (allowedSolution == AllowedSolution.ANY_SIDE) { // no further bracketing required return baseRoot; } // find a very small interval bracketing the root final double step = FastMath.max(bracketing.getAbsoluteAccuracy(), FastMath.abs(baseRoot * bracketing.getRelativeAccuracy())); double xLo = FastMath.max(min, baseRoot - step); double fLo = f.value(xLo); double xHi = FastMath.min(max, baseRoot + step); double fHi = f.value(xHi); int remainingEval = maxEval - 2; while (remainingEval > 0) { if ((fLo >= 0 && fHi <= 0) || (fLo <= 0 && fHi >= 0)) { // compute the root on the selected side return bracketing.solve(remainingEval, f, xLo, xHi, baseRoot, allowedSolution); } // try increasing the interval boolean changeLo = false; boolean changeHi = false; if (fLo < fHi) { // increasing function if (fLo >= 0) { changeLo = true; } else { changeHi = true; } } else if (fLo > fHi) { // decreasing function if (fLo <= 0) { changeLo = true; } else { changeHi = true; } } else { // unknown variation changeLo = true; changeHi = true; } // update the lower bound if (changeLo) { xLo = FastMath.max(min, xLo - step); fLo = f.value(xLo); remainingEval--; } // update the higher bound if (changeHi) { xHi = FastMath.min(max, xHi + step); fHi = f.value(xHi); remainingEval--; } } throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING, xLo, xHi, fLo, fHi, maxEval - remainingEval, maxEval, baseRoot, min, max); }
Example #18
Source File: MullerSolver2.java From astor with GNU General Public License v2.0 | 4 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { final double min = getMin(); final double max = getMax(); verifyInterval(min, max); final double relativeAccuracy = getRelativeAccuracy(); final double absoluteAccuracy = getAbsoluteAccuracy(); final double functionValueAccuracy = getFunctionValueAccuracy(); // x2 is the last root approximation // x is the new approximation and new x2 for next round // x0 < x1 < x2 does not hold here double x0 = min; double y0 = computeObjectiveValue(x0); if (FastMath.abs(y0) < functionValueAccuracy) { return x0; } double x1 = max; double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) < functionValueAccuracy) { return x1; } if(y0 * y1 > 0) { throw new NoBracketingException(x0, x1, y0, y1); } double x2 = 0.5 * (x0 + x1); double y2 = computeObjectiveValue(x2); double oldx = Double.POSITIVE_INFINITY; while (true) { // quadratic interpolation through x0, x1, x2 final double q = (x2 - x1) / (x1 - x0); final double a = q * (y2 - (1 + q) * y1 + q * y0); final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0; final double c = (1 + q) * y2; final double delta = b * b - 4 * a * c; double x; final double denominator; if (delta >= 0.0) { // choose a denominator larger in magnitude double dplus = b + FastMath.sqrt(delta); double dminus = b - FastMath.sqrt(delta); denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus; } else { // take the modulus of (B +/- FastMath.sqrt(delta)) denominator = FastMath.sqrt(b * b - delta); } if (denominator != 0) { x = x2 - 2.0 * c * (x2 - x1) / denominator; // perturb x if it exactly coincides with x1 or x2 // the equality tests here are intentional while (x == x1 || x == x2) { x += absoluteAccuracy; } } else { // extremely rare case, get a random number to skip it x = min + FastMath.random() * (max - min); oldx = Double.POSITIVE_INFINITY; } final double y = computeObjectiveValue(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance || FastMath.abs(y) <= functionValueAccuracy) { return x; } // prepare the next iteration x0 = x1; y0 = y1; x1 = x2; y1 = y2; x2 = x; y2 = y; oldx = x; } }
Example #19
Source File: BaseAbstractUnivariateRealSolver.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Method for implementing actual optimization algorithms in derived * classes. * * @return the root. * @throws TooManyEvaluationsException if the maximal number of evaluations * is exceeded. * @throws NoBracketingException if the initial search interval does not bracket * a root and the solver requires it. */ protected abstract double doSolve() throws TooManyEvaluationsException, NoBracketingException;
Example #20
Source File: BaseAbstractUnivariateRealSolver.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Method for implementing actual optimization algorithms in derived * classes. * * @return the root. * @throws TooManyEvaluationsException if the maximal number of evaluations * is exceeded. * @throws NoBracketingException if the initial search interval does not bracket * a root and the solver requires it. */ protected abstract double doSolve() throws TooManyEvaluationsException, NoBracketingException;