org.apache.flink.graph.asm.degree.annotate.directed.VertexDegrees Java Examples
The following examples show how to use
org.apache.flink.graph.asm.degree.annotate.directed.VertexDegrees.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: TriadicCensus.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
@Override public TriadicCensus<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); triangleListingHelper = new TriangleListingHelper<>(); input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)) .output(triangleListingHelper) .name("Triangle counts"); vertexDegreesHelper = new VertexDegreesHelper<>(); input .run(new VertexDegrees<K, VV, EV>() .setParallelism(parallelism)) .output(vertexDegreesHelper) .name("Edge and triplet counts"); return this; }
Example #2
Source File: VertexMetrics.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
@Override public VertexMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); vertexMetricsHelper = new VertexMetricsHelper<>(); vertexDegree .output(vertexMetricsHelper) .name("Vertex metrics"); return this; }
Example #3
Source File: TriadicCensus.java From flink with Apache License 2.0 | 6 votes |
@Override public TriadicCensus<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); triangleListingHelper = new TriangleListingHelper<>(); input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)) .output(triangleListingHelper) .name("Triangle counts"); vertexDegreesHelper = new VertexDegreesHelper<>(); input .run(new VertexDegrees<K, VV, EV>() .setParallelism(parallelism)) .output(vertexDegreesHelper) .name("Edge and triplet counts"); return this; }
Example #4
Source File: VertexMetrics.java From flink with Apache License 2.0 | 6 votes |
@Override public VertexMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); vertexMetricsHelper = new VertexMetricsHelper<>(); vertexDegree .output(vertexMetricsHelper) .name("Vertex metrics"); return this; }
Example #5
Source File: TriadicCensus.java From flink with Apache License 2.0 | 6 votes |
@Override public TriadicCensus<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); triangleListingHelper = new TriangleListingHelper<>(); input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)) .output(triangleListingHelper) .name("Triangle counts"); vertexDegreesHelper = new VertexDegreesHelper<>(); input .run(new VertexDegrees<K, VV, EV>() .setParallelism(parallelism)) .output(vertexDegreesHelper) .name("Edge and triplet counts"); return this; }
Example #6
Source File: VertexMetrics.java From flink with Apache License 2.0 | 6 votes |
@Override public VertexMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); vertexMetricsHelper = new VertexMetricsHelper<>(); vertexDegree .output(vertexMetricsHelper) .name("Vertex metrics"); return this; }
Example #7
Source File: LocalClusteringCoefficient.java From Flink-CEPplus with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w, bitmask DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, edge count DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #8
Source File: LocalClusteringCoefficient.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w, bitmask DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, edge count DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #9
Source File: LocalClusteringCoefficient.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w, bitmask DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, edge count DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #10
Source File: PageRank.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example #11
Source File: PageRank.java From flink with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example #12
Source File: PageRank.java From flink with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }