org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator Java Examples
The following examples show how to use
org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: RandomUtils.java From myrrix-recommender with Apache License 2.0 | 6 votes |
/** * @param n approximate number of items to choose * @param stream stream to choose from randomly * @param streamSize (approximate) stream size * @param random random number generator * @return up to n elements chosen uninformly at random from the stream */ public static long[] chooseAboutNFromStream(int n, LongPrimitiveIterator stream, int streamSize, RandomGenerator random) { LongPrimitiveIterator it; if (n < streamSize) { it = new SamplingLongPrimitiveIterator(random, stream, (double) n / streamSize); } else { it = stream; } FastIDSet chosen = new FastIDSet(n); while (it.hasNext()) { chosen.add(it.nextLong()); } return chosen.toArray(); }
Example #2
Source File: GenerationLoader.java From myrrix-recommender with Apache License 2.0 | 6 votes |
private static void removeNotUpdated(LongPrimitiveIterator it, FastIDSet updated, FastIDSet recentlyActive, Lock writeLock) { writeLock.lock(); try { while (it.hasNext()) { long id = it.nextLong(); if (!updated.contains(id) && !recentlyActive.contains(id)) { it.remove(); } } } finally { writeLock.unlock(); } }
Example #3
Source File: GenerationSerializer.java From myrrix-recommender with Apache License 2.0 | 6 votes |
private static void writeKnownIDs(ObjectOutputStream out, FastByIDMap<FastIDSet> knownItemIDs) throws IOException { if (knownItemIDs == null) { out.writeInt(NULL_COUNT); } else { out.writeInt(knownItemIDs.size()); for (FastByIDMap.MapEntry<FastIDSet> entry : knownItemIDs.entrySet()) { out.writeLong(entry.getKey()); FastIDSet itemIDs = entry.getValue(); out.writeInt(itemIDs.size()); LongPrimitiveIterator it = itemIDs.iterator(); while (it.hasNext()) { out.writeLong(it.nextLong()); } } } }
Example #4
Source File: GenerationSerializer.java From myrrix-recommender with Apache License 2.0 | 6 votes |
private static void writeClusters(Collection<IDCluster> clusters, ObjectOutputStream out) throws IOException { if (clusters == null) { out.writeInt(0); } else { out.writeInt(clusters.size()); for (IDCluster cluster : clusters) { FastIDSet members = cluster.getMembers(); out.writeInt(members.size()); LongPrimitiveIterator it = members.iterator(); while (it.hasNext()) { out.writeLong(it.nextLong()); } float[] centroid = cluster.getCentroid(); out.writeInt(centroid.length); for (float f : centroid) { out.writeFloat(f); } } } }
Example #5
Source File: AlternatingLeastSquares.java From myrrix-recommender with Apache License 2.0 | 6 votes |
/** * Like {@link MatrixUtils#transposeTimesSelf(FastByIDMap)}, but instead of computing MT * M, * it computes MT * C * M, where C is a diagonal matrix of 1s and 0s. This is like pretending some * rows of M are 0. * * @see MatrixUtils#transposeTimesSelf(FastByIDMap) * @see #LOSS_IGNORES_UNSPECIFIED */ private static RealMatrix partialTransposeTimesSelf(FastByIDMap<float[]> M, int dimension, LongPrimitiveIterator keys) { RealMatrix result = new Array2DRowRealMatrix(dimension, dimension); while (keys.hasNext()) { long key = keys.next(); float[] vector = M.get(key); for (int row = 0; row < dimension; row++) { float rowValue = vector[row]; for (int col = 0; col < dimension; col++) { result.addToEntry(row, col, rowValue * vector[col]); } } } return result; }
Example #6
Source File: ServerRecommender.java From myrrix-recommender with Apache License 2.0 | 6 votes |
private static FastIDSet getIDsFromKeys(FastByIDMap<float[]> map, Lock readLock, FastIDSet tagIDs) { readLock.lock(); try { FastIDSet ids = new FastIDSet(map.size()); LongPrimitiveIterator it = map.keySetIterator(); while (it.hasNext()) { long id = it.nextLong(); if (!tagIDs.contains(id)) { ids.add(id); } } return ids; } finally { readLock.unlock(); } }
Example #7
Source File: FastIDSetTest.java From myrrix-recommender with Apache License 2.0 | 5 votes |
@Test public void testIterator() { FastIDSet set = buildTestFastSet(); Collection<Long> expected = new HashSet<Long>(3); expected.add(1L); expected.add(2L); expected.add(3L); LongPrimitiveIterator it = set.iterator(); while (it.hasNext()) { expected.remove(it.nextLong()); } assertTrue(expected.isEmpty()); }
Example #8
Source File: RandomUtils.java From myrrix-recommender with Apache License 2.0 | 5 votes |
/** * @param set to choose from * @param random random number generator * @return element of the set chosen uniformly at random */ public static int randomFrom(FastIDSet set, RandomGenerator random) { int size = set.size(); Preconditions.checkArgument(size > 0, "Empty set"); LongPrimitiveIterator it = set.iterator(); it.skip(random.nextInt(size)); return (int) it.nextLong(); }
Example #9
Source File: SamplingLongPrimitiveIterator.java From myrrix-recommender with Apache License 2.0 | 5 votes |
public SamplingLongPrimitiveIterator(RandomGenerator random, LongPrimitiveIterator delegate, double samplingRate) { Preconditions.checkNotNull(random); Preconditions.checkNotNull(delegate); Preconditions.checkArgument(samplingRate > 0.0 && samplingRate <= 1.0); // Geometric distribution is special case of negative binomial (aka Pascal) with r=1: geometricDistribution = new PascalDistribution(random, 1, samplingRate); this.delegate = delegate; this.hasNext = true; doNext(); }
Example #10
Source File: MatrixUtils.java From myrrix-recommender with Apache License 2.0 | 5 votes |
private static long[] unionColumnKeysInOrder(FastByIDMap<FastByIDFloatMap> M) { FastIDSet keys = new FastIDSet(1000); for (FastByIDMap.MapEntry<FastByIDFloatMap> entry : M.entrySet()) { LongPrimitiveIterator it = entry.getValue().keySetIterator(); while (it.hasNext()) { keys.add(it.nextLong()); } } long[] keysArray = keys.toArray(); Arrays.sort(keysArray); return keysArray; }
Example #11
Source File: MatrixUtils.java From myrrix-recommender with Apache License 2.0 | 5 votes |
private static long[] keysInOrder(FastByIDMap<?> map) { FastIDSet keys = new FastIDSet(map.size()); LongPrimitiveIterator it = map.keySetIterator(); while (it.hasNext()) { keys.add(it.nextLong()); } long[] keysArray = keys.toArray(); Arrays.sort(keysArray); return keysArray; }
Example #12
Source File: TranslatingClientRecommender.java From myrrix-recommender with Apache License 2.0 | 5 votes |
private Collection<String> translate(FastIDSet itemIDs) { Collection<String> result = Lists.newArrayListWithCapacity(itemIDs.size()); LongPrimitiveIterator it = itemIDs.iterator(); while (it.hasNext()) { result.add(untranslateItem(it.nextLong())); } return result; }
Example #13
Source File: TranslatingClientRecommender.java From myrrix-recommender with Apache License 2.0 | 5 votes |
@Override public Collection<String> getUserCluster(int n) throws TasteException { FastIDSet userIDs = delegate.getUserCluster(n); Collection<String> translated = Lists.newArrayListWithCapacity(userIDs.size()); LongPrimitiveIterator it = userIDs.iterator(); while (it.hasNext()) { translated.add(Long.toString(it.nextLong())); } return translated; }
Example #14
Source File: AbstractMyrrixServlet.java From myrrix-recommender with Apache License 2.0 | 5 votes |
/** * Outputs IDs in CSV or JSON format. When outputting CSV, one ID is written per line. When outputting * JSON, the output is an array of IDs. */ final void outputIDs(HttpServletRequest request, ServletResponse response, FastIDSet ids) throws IOException { Writer writer = response.getWriter(); LongPrimitiveIterator it = ids.iterator(); switch (determineResponseType(request)) { case JSON: writer.write('['); boolean first = true; while (it.hasNext()) { if (first) { first = false; } else { writer.write(','); } writer.write(Long.toString(it.nextLong())); } writer.write(']'); break; case CSV: while (it.hasNext()) { writer.write(Long.toString(it.nextLong())); writer.write('\n'); } break; default: throw new IllegalStateException("Unknown response type"); } }
Example #15
Source File: GenerationSerializer.java From myrrix-recommender with Apache License 2.0 | 5 votes |
private static void writeIDSet(FastIDSet ids, ObjectOutputStream out) throws IOException { if (ids == null) { out.writeInt(0); } else { out.writeInt(ids.size()); LongPrimitiveIterator it = ids.iterator(); while (it.hasNext()) { out.writeLong(it.nextLong()); } } }
Example #16
Source File: GenerationLoader.java From myrrix-recommender with Apache License 2.0 | 5 votes |
private static FastIDSet keysToSet(FastByIDMap<?> map) { FastIDSet result = new FastIDSet(map.size()); LongPrimitiveIterator it = map.keySetIterator(); while (it.hasNext()) { result.add(it.nextLong()); } return result; }
Example #17
Source File: MergeModels.java From myrrix-recommender with Apache License 2.0 | 5 votes |
public static void merge(File model1File, File model2File, File mergedModelFile) throws IOException { Generation model1 = GenerationSerializer.readGeneration(model1File); Generation model2 = GenerationSerializer.readGeneration(model2File); FastByIDMap<float[]> x1 = model1.getX(); FastByIDMap<float[]> y1 = model1.getY(); FastByIDMap<float[]> x2 = model2.getX(); FastByIDMap<float[]> y2 = model2.getY(); RealMatrix translation = multiply(y1, x2); FastByIDMap<float[]> xMerged = MatrixUtils.multiply(translation.transpose(), x1); FastIDSet emptySet = new FastIDSet(); FastByIDMap<FastIDSet> knownItems = new FastByIDMap<FastIDSet>(); LongPrimitiveIterator it = xMerged.keySetIterator(); while (it.hasNext()) { knownItems.put(it.nextLong(), emptySet); } FastIDSet x1ItemTagIDs = model1.getItemTagIDs(); FastIDSet y2UserTagIDs = model2.getUserTagIDs(); Generation merged = new Generation(knownItems, xMerged, y2, x1ItemTagIDs, y2UserTagIDs); GenerationSerializer.writeGeneration(merged, mergedModelFile); }
Example #18
Source File: MahoutDataModel.java From rival with Apache License 2.0 | 5 votes |
@Override public Iterable<Long> getUsers() { if (model == null) { generateDatamodel(); } List<Long> users = new ArrayList<>(); LongPrimitiveIterator lpi = model.getUserIDs(); while (lpi.hasNext()) { users.add(lpi.nextLong()); } return users; }
Example #19
Source File: MahoutDataModel.java From rival with Apache License 2.0 | 5 votes |
@Override public Iterable<Long> getItems() { if (model == null) { generateDatamodel(); } List<Long> items = new ArrayList<>(); LongPrimitiveIterator lpi = model.getItemIDs(); while (lpi.hasNext()) { items.add(lpi.nextLong()); } return items; }
Example #20
Source File: ServerRecommender.java From myrrix-recommender with Apache License 2.0 | 4 votes |
/** * <p>Lists the items that were most influential in recommending a given item to a given user. Exactly how this * is determined is left to the implementation, but, generally this will return items that the user prefers * and that are similar to the given item.</p> * * <p>These values by which the results are ordered are opaque values and have no interpretation * other than that larger means stronger.</p> * * @param userID ID of user who was recommended the item * @param itemID ID of item that was recommended * @param howMany maximum number of items to return * @return {@link List} of {@link RecommendedItem}, ordered from most influential in recommended the given * item to least * @throws NoSuchUserException if the user is not known in the model * @throws NoSuchItemException if the item is not known in the model * @throws NotReadyException if the recommender has no model available yet */ @Override public List<RecommendedItem> recommendedBecause(long userID, long itemID, int howMany) throws NoSuchUserException, NoSuchItemException, NotReadyException { Preconditions.checkArgument(howMany > 0, "howMany must be positive"); Generation generation = getCurrentGeneration(); FastByIDMap<FastIDSet> knownItemIDs = generation.getKnownItemIDs(); if (knownItemIDs == null) { throw new UnsupportedOperationException("No known item IDs available"); } Lock knownItemLock = generation.getKnownItemLock().readLock(); FastIDSet userKnownItemIDs; knownItemLock.lock(); try { userKnownItemIDs = knownItemIDs.get(userID); } finally { knownItemLock.unlock(); } if (userKnownItemIDs == null) { throw new NoSuchUserException(userID); } FastByIDMap<float[]> Y = generation.getY(); Lock yLock = generation.getYLock().readLock(); yLock.lock(); try { float[] features = Y.get(itemID); if (features == null) { throw new NoSuchItemException(itemID); } FastByIDMap<float[]> toFeatures; synchronized (userKnownItemIDs) { toFeatures = new FastByIDMap<float[]>(userKnownItemIDs.size()); LongPrimitiveIterator it = userKnownItemIDs.iterator(); while (it.hasNext()) { long fromItemID = it.nextLong(); float[] fromFeatures = Y.get(fromItemID); toFeatures.put(fromItemID, fromFeatures); } } return TopN.selectTopN(new RecommendedBecauseIterator(toFeatures.entrySet().iterator(), generation.getUserTagIDs(), features), howMany); } finally { yLock.unlock(); } }
Example #21
Source File: LocationSensitiveHash.java From myrrix-recommender with Apache License 2.0 | 4 votes |
private IDToEntryIterator(LongPrimitiveIterator input) { this.input = input; this.delegate = new MutableMapEntry(); }
Example #22
Source File: PrintGeneration.java From myrrix-recommender with Apache License 2.0 | 4 votes |
private static void printTagIDs(FastIDSet ids, Appendable out) throws IOException { LongPrimitiveIterator it = ids.iterator(); while (it.hasNext()) { out.append(Long.toString(it.nextLong())).append('\n'); } }
Example #23
Source File: FastByIDMap.java From myrrix-recommender with Apache License 2.0 | 4 votes |
public LongPrimitiveIterator keySetIterator() { return new KeyIterator(); }
Example #24
Source File: FastByIDFloatMap.java From myrrix-recommender with Apache License 2.0 | 4 votes |
public LongPrimitiveIterator keySetIterator() { return new KeyIterator(); }
Example #25
Source File: FastIDSet.java From myrrix-recommender with Apache License 2.0 | 4 votes |
@Override public LongPrimitiveIterator iterator() { return new KeyIterator(); }
Example #26
Source File: SamplingLongPrimitiveIterator.java From myrrix-recommender with Apache License 2.0 | 4 votes |
public SamplingLongPrimitiveIterator(LongPrimitiveIterator delegate, double samplingRate) { this(RandomManager.getRandom(), delegate, samplingRate); }
Example #27
Source File: SamplingLongPrimitiveIterator.java From myrrix-recommender with Apache License 2.0 | 4 votes |
public static LongPrimitiveIterator maybeWrapIterator(LongPrimitiveIterator delegate, double samplingRate) { return samplingRate >= 1.0 ? delegate : new SamplingLongPrimitiveIterator(delegate, samplingRate); }
Example #28
Source File: DataModelWrapper.java From rival with Apache License 2.0 | 4 votes |
/** * {@inheritDoc} */ @Override public LongPrimitiveIterator getItemIDs() throws TasteException { return wrapper.getItemIDs(); }
Example #29
Source File: DataModelWrapper.java From rival with Apache License 2.0 | 4 votes |
/** * {@inheritDoc} */ @Override public LongPrimitiveIterator getUserIDs() throws TasteException { return wrapper.getUserIDs(); }
Example #30
Source File: MahoutRecommenderRunner.java From rival with Apache License 2.0 | 4 votes |
/** * Runs a Mahout recommender using the provided datamodels and the * previously provided properties. * * @param opts see * {@link net.recommenders.rival.recommend.frameworks.AbstractRunner.RUN_OPTIONS} * @param trainingModel model to be used to train the recommender. * @param testModel model to be used to test the recommender. * @return nothing when opts is * {@link net.recommenders.rival.recommend.frameworks.AbstractRunner.RUN_OPTIONS#OUTPUT_RECS}, * otherwise, when opts is * {@link net.recommenders.rival.recommend.frameworks.AbstractRunner.RUN_OPTIONS#RETURN_RECS} * or * {@link net.recommenders.rival.recommend.frameworks.AbstractRunner.RUN_OPTIONS#RETURN_AND_OUTPUT_RECS} * it returns the predictions * @throws TasteException when there is a problem with the Mahout * recommender * @throws RecommenderException when recommender cannot be instantiated * properly */ public TemporalDataModelIF<Long, Long> runMahoutRecommender(final RUN_OPTIONS opts, final DataModel trainingModel, final DataModel testModel) throws RecommenderException, TasteException { if (isAlreadyRecommended()) { return null; } GenericRecommenderBuilder grb = new GenericRecommenderBuilder(); if (getProperties().containsKey(RecommendationRunner.NEIGHBORHOOD) && getProperties().getProperty(RecommendationRunner.NEIGHBORHOOD).equals("-1")) { getProperties().setProperty(RecommendationRunner.NEIGHBORHOOD, Math.round(Math.sqrt(trainingModel.getNumItems())) + ""); } if (getProperties().containsKey(RecommendationRunner.FACTORS) && getProperties().getProperty(RecommendationRunner.FACTORS).equals("-1")) { getProperties().setProperty(RecommendationRunner.FACTORS, Math.round(Math.sqrt(trainingModel.getNumItems())) + ""); } Recommender recommender = null; if (getProperties().getProperty(RecommendationRunner.FACTORS) == null) { recommender = grb.buildRecommender( trainingModel, getProperties().getProperty(RecommendationRunner.RECOMMENDER), getProperties().getProperty(RecommendationRunner.SIMILARITY), Integer.parseInt(getProperties().getProperty(RecommendationRunner.NEIGHBORHOOD))); } if (getProperties().getProperty(RecommendationRunner.FACTORS) != null) { recommender = grb.buildRecommender( trainingModel, getProperties().getProperty(RecommendationRunner.RECOMMENDER), getProperties().getProperty(RecommendationRunner.FACTORIZER), DEFAULT_ITERATIONS, Integer.parseInt(getProperties().getProperty(RecommendationRunner.FACTORS))); } LongPrimitiveIterator users = testModel.getUserIDs(); TemporalDataModelIF<Long, Long> model = null; switch (opts) { case RETURN_AND_OUTPUT_RECS: case RETURN_RECS: model = new TemporalDataModel<>(); break; default: model = null; } String name = null; switch (opts) { case RETURN_AND_OUTPUT_RECS: case OUTPUT_RECS: name = getFileName(); break; default: name = null; } boolean createFile = true; while (users.hasNext()) { long u = users.nextLong(); try { List<RecommendedItem> items = recommender.recommend(u, trainingModel.getNumItems()); // List<RecommenderIO.Preference<Long, Long>> prefs = new ArrayList<>(); for (RecommendedItem i : items) { prefs.add(new RecommenderIO.Preference<>(u, i.getItemID(), i.getValue())); } // RecommenderIO.writeData(u, prefs, getPath(), name, !createFile, model); createFile = false; } catch (TasteException e) { e.printStackTrace(); } } return model; }