opennlp.tools.namefind.TokenNameFinderModel Java Examples

The following examples show how to use opennlp.tools.namefind.TokenNameFinderModel. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: OpenNlpService.java    From elasticsearch-ingest-opennlp with Apache License 2.0 6 votes vote down vote up
protected OpenNlpService start() {
    StopWatch sw = new StopWatch("models-loading");
    Map<String, String> settingsMap = IngestOpenNlpPlugin.MODEL_FILE_SETTINGS.getAsMap(settings);
    for (Map.Entry<String, String> entry : settingsMap.entrySet()) {
        String name = entry.getKey();
        sw.start(name);
        Path path = configDirectory.resolve(entry.getValue());
        try (InputStream is = Files.newInputStream(path)) {
            nameFinderModels.put(name, new TokenNameFinderModel(is));
        } catch (IOException e) {
            logger.error((Supplier<?>) () -> new ParameterizedMessage("Could not load model [{}] with path [{}]", name, path), e);
        }
        sw.stop();
    }

    if (settingsMap.keySet().size() == 0) {
        logger.error("Did not load any models for ingest-opennlp plugin, none configured");
    } else {
        logger.info("Read models in [{}] for {}", sw.totalTime(), settingsMap.keySet());
    }

    return this;
}
 
Example #2
Source File: NamedEntityRecognitionUnitTest.java    From tutorials with MIT License 6 votes vote down vote up
@Test
public void givenEnglishPersonModel_whenNER_thenPersonsAreDetected() throws Exception {
    
    SimpleTokenizer tokenizer = SimpleTokenizer.INSTANCE;
    String[] tokens = tokenizer.tokenize("John is 26 years old. His best friend's name is Leonard. He has a sister named Penny.");
    
    InputStream inputStreamNameFinder = getClass().getResourceAsStream("/models/en-ner-person.bin");
    TokenNameFinderModel model = new TokenNameFinderModel(inputStreamNameFinder);
    NameFinderME nameFinderME = new NameFinderME(model);
    List<Span> spans = Arrays.asList(nameFinderME.find(tokens));
    assertThat(spans.toString()).isEqualTo("[[0..1) person, [13..14) person, [20..21) person]");
    List<String> names = new ArrayList<String>();
    int k = 0;
    for (Span s : spans) {
        names.add("");
        for (int index = s.getStart(); index < s.getEnd(); index++) {
            names.set(k, names.get(k) + tokens[index]);
        }
        k++;
    }
    assertThat(names).contains("John","Leonard","Penny");
}
 
Example #3
Source File: TestNER.java    From Mutters with Apache License 2.0 6 votes vote down vote up
@Test
public void testAddressNER() throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader().getResource("models/en-ner-address.bin");
  assertThat(modelUrl, is(notNullValue()));

  TokenNameFinderModel model = new TokenNameFinderModel(modelUrl);
  assertThat(model, is(notNullValue()));

  NameFinderME nameFinder = new NameFinderME(model);
  String[] tokens = SimpleTokenizer.INSTANCE.tokenize("Send a taxi to 12 Pleasent Street");
  Span[] spans = nameFinder.find(tokens);
  assertThat(spans.length, is(1));

  String[] locations = Span.spansToStrings(spans, tokens);
  assertThat(locations.length, is(1));
  assertThat(locations[0], is("12 Pleasent Street"));
}
 
Example #4
Source File: TestNER.java    From Mutters with Apache License 2.0 6 votes vote down vote up
@Test
public void testDateNER() throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader().getResource("models/en-ner-dates.bin");
  assertThat(modelUrl, is(notNullValue()));

  TokenNameFinderModel model = new TokenNameFinderModel(modelUrl);
  assertThat(model, is(notNullValue()));

  NameFinderME nameFinder = new NameFinderME(model);
  String[] tokens = SimpleTokenizer.INSTANCE
      .tokenize("Mr. John Smith of New York, married Anne Green of London today.");
  assertThat(tokens.length, is(15));

  Span[] spans = nameFinder.find(tokens);
  assertThat(spans.length, is(1));

  String[] locations = Span.spansToStrings(spans, tokens);
  assertThat(locations.length, is(1));
  assertThat(locations[0], is("today"));
}
 
Example #5
Source File: TestNER.java    From Mutters with Apache License 2.0 6 votes vote down vote up
@Test
public void testLocationNER() throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader().getResource("models/en-ner-locations.bin");
  assertThat(modelUrl, is(notNullValue()));

  TokenNameFinderModel model = new TokenNameFinderModel(modelUrl);
  assertThat(model, is(notNullValue()));

  NameFinderME nameFinder = new NameFinderME(model);
  String[] tokens = SimpleTokenizer.INSTANCE
      .tokenize("Mr. John Smith of New York, married Anne Green of London today.");
  assertThat(tokens.length, is(15));

  Span[] spans = nameFinder.find(tokens);
  assertThat(spans.length, is(2));

  String[] locations = Span.spansToStrings(spans, tokens);
  assertThat(locations.length, is(2));
  assertThat(locations[0], is("New York"));
  assertThat(locations[1], is("London"));
}
 
Example #6
Source File: TestNER.java    From Mutters with Apache License 2.0 6 votes vote down vote up
@Test
public void testPersonNER() throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader().getResource("models/en-ner-persons.bin");
  assertThat(modelUrl, is(notNullValue()));

  TokenNameFinderModel model = new TokenNameFinderModel(modelUrl);
  assertThat(model, is(notNullValue()));

  NameFinderME nameFinder = new NameFinderME(model);
  String[] tokens = SimpleTokenizer.INSTANCE
      .tokenize("Mr. John Smith of New York, married Anne Green of London today.");
  assertThat(tokens.length, is(15));

  Span[] spans = nameFinder.find(tokens);
  assertThat(spans.length, is(2));

  String[] names = Span.spansToStrings(spans, tokens);
  assertThat(names.length, is(2));
  assertThat(names[0], is("John Smith"));
  assertThat(names[1], is("Anne Green"));
}
 
Example #7
Source File: OpenNlpService.java    From elasticsearch-ingest-opennlp with Apache License 2.0 6 votes vote down vote up
public ExtractedEntities find(String content, String field) {
    try {
        if (!nameFinderModels.containsKey(field)) {
            throw new ElasticsearchException("Could not find field [{}], possible values {}", field, nameFinderModels.keySet());
        }
        TokenNameFinderModel finderModel = nameFinderModels.get(field);
        if (threadLocal.get() == null || !threadLocal.get().equals(finderModel)) {
            threadLocal.set(finderModel);
        }

        String[] tokens = SimpleTokenizer.INSTANCE.tokenize(content);
        Span[] spans = new NameFinderME(finderModel).find(tokens);

        return new ExtractedEntities(tokens, spans);
    } finally {
        threadLocal.remove();
    }
}
 
Example #8
Source File: NameFinderFactory.java    From wiseowl with MIT License 6 votes vote down vote up
protected void loadNameFinders(String language, String modelDirectory) throws IOException {
  //<start id="maxent.examples.namefinder.setup"/> 
  File modelFile;

  File[] models //<co id="nfe.findmodels"/>
    = findNameFinderModels(language, modelDirectory);
  modelNames = new String[models.length];
  finders = new NameFinderME[models.length];

  for (int fi = 0; fi < models.length; fi++) {
    modelFile = models[fi];
    modelNames[fi] = modelNameFromFile(language, modelFile); //<co id="nfe.modelname"/>
    
    log.info("Loading model {}", modelFile); 
    InputStream modelStream = new FileInputStream(modelFile);
    TokenNameFinderModel model = //<co id="nfe.modelreader"/>
        new TokenNameFinderModel(modelStream);
    finders[fi] = new NameFinderME(model);
    
  }

}
 
Example #9
Source File: OpenNlpNerRecommender.java    From inception with Apache License 2.0 6 votes vote down vote up
@Override
public void train(RecommenderContext aContext, List<CAS> aCasses)
    throws RecommendationException
{
    List<NameSample> nameSamples = extractNameSamples(aCasses);
    
    if (nameSamples.size() < 2) {
        LOG.info("Not enough training data: [{}] items", nameSamples.size());
        return;
    }
    
    // The beam size controls how many results are returned at most. But even if the user
    // requests only few results, we always use at least the default bean size recommended by
    // OpenNLP
    int beamSize = Math.max(maxRecommendations, NameFinderME.DEFAULT_BEAM_SIZE);

    TrainingParameters params = traits.getParameters();
    params.put(BeamSearch.BEAM_SIZE_PARAMETER, Integer.toString(beamSize));
    
    TokenNameFinderModel model = train(nameSamples, params);
    
    aContext.put(KEY_MODEL, model);
}
 
Example #10
Source File: Chapter1.java    From Natural-Language-Processing-with-Java-Second-Edition with MIT License 6 votes vote down vote up
private static void nameFinderExample() {
    try {
        String[] sentences = {
            "Tim was a good neighbor. Perhaps not as good a Bob "
            + "Haywood, but still pretty good. Of course Mr. Adam "
            + "took the cake!"};
        Tokenizer tokenizer = SimpleTokenizer.INSTANCE;
        TokenNameFinderModel model = new TokenNameFinderModel(new File(
                "C:\\OpenNLP Models", "en-ner-person.bin"));
        NameFinderME finder = new NameFinderME(model);

        for (String sentence : sentences) {
            // Split the sentence into tokens
            String[] tokens = tokenizer.tokenize(sentence);

            // Find the names in the tokens and return Span objects
            Span[] nameSpans = finder.find(tokens);

            // Print the names extracted from the tokens using the Span data
            System.out.println(Arrays.toString(
                    Span.spansToStrings(nameSpans, tokens)));
        }
    } catch (IOException ex) {
        ex.printStackTrace();
    }
}
 
Example #11
Source File: OpenNlpNerRecommender.java    From inception with Apache License 2.0 5 votes vote down vote up
private TokenNameFinderModel train(List<NameSample> aNameSamples,
        TrainingParameters aParameters)
    throws RecommendationException
{
    try (NameSampleStream stream = new NameSampleStream(aNameSamples)) {
        TokenNameFinderFactory finderFactory = new TokenNameFinderFactory();
        return NameFinderME.train("unknown", null, stream, aParameters, finderFactory);
    } catch (IOException e) {
        LOG.error("Exception during training the OpenNLP Named Entity Recognizer model.", e);
        throw new RecommendationException("Error while training OpenNLP pos", e);
    }
}
 
Example #12
Source File: Chapter4.java    From Natural-Language-Processing-with-Java-Second-Edition with MIT License 5 votes vote down vote up
private static void usingMultipleNERModels() {
    // Models - en-ner-person.bin en-ner-location.bin en-ner-money.bin 
    // en-ner-organization.bin en-ner-time.bin
    try {
        InputStream tokenStream = new FileInputStream(
                new File(getModelDir(), "en-token.bin"));

        TokenizerModel tokenModel = new TokenizerModel(tokenStream);
        Tokenizer tokenizer = new TokenizerME(tokenModel);

        String modelNames[] = {"en-ner-person.bin", "en-ner-location.bin",
            "en-ner-organization.bin"};
        ArrayList<String> list = new ArrayList();
        for (String name : modelNames) {
            TokenNameFinderModel entityModel = new TokenNameFinderModel(
                    new FileInputStream(
                            new File(getModelDir(), name)));
            NameFinderME nameFinder = new NameFinderME(entityModel);
            for (int index = 0; index < sentences.length; index++) {
                String tokens[] = tokenizer.tokenize(sentences[index]);
                Span nameSpans[] = nameFinder.find(tokens);
                for (Span span : nameSpans) {
                    list.add("Sentence: " + index
                            + " Span: " + span.toString() + " Entity: "
                            + tokens[span.getStart()]);
                }
            }
        }
        System.out.println("Multiple Entities");
        for (String element : list) {
            System.out.println(element);
        }
    } catch (Exception ex) {
        ex.printStackTrace();
    }
}
 
Example #13
Source File: TestNER.java    From Mutters with Apache License 2.0 5 votes vote down vote up
@Test
public void testModelLoad() throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader().getResource("models/en-ner-persons.bin");
  assertThat(modelUrl, is(notNullValue()));

  TokenNameFinderModel model = new TokenNameFinderModel(modelUrl);
  assertThat(model, is(notNullValue()));
}
 
Example #14
Source File: Chapter4.java    From Natural-Language-Processing-with-Java-Second-Edition with MIT License 5 votes vote down vote up
private static void trainingOpenNLPNERModel() {
    try (OutputStream modelOutputStream = new BufferedOutputStream(
            new FileOutputStream(new File("modelFile")));) {
        ObjectStream<String> lineStream = new PlainTextByLineStream(
                new FileInputStream("en-ner-person.train"), "UTF-8");
        ObjectStream<NameSample> sampleStream = new NameSampleDataStream(lineStream);

        TokenNameFinderModel model = NameFinderME.train("en", "person", sampleStream,
                null, 100, 5);

        model.serialize(modelOutputStream);
    } catch (IOException ex) {
        ex.printStackTrace();
    }
}
 
Example #15
Source File: BasicActions.java    From knowledge-extraction with Apache License 2.0 5 votes vote down vote up
@Test
public void testNameFinder(){
	try (InputStream modelIn = BasicActions.class.getClassLoader()
				.getResourceAsStream(Consts.EN_NER_MODEL);){
		
		TokenNameFinderModel model = new TokenNameFinderModel(modelIn);
		NameFinderME nameFinder = new NameFinderME(model);
		Span nameSpans[] = nameFinder.find(testTokenizer());
		System.out.println(Arrays.toString(nameSpans));
		
	} catch (IOException e) {
		e.printStackTrace();
	}
}
 
Example #16
Source File: Chapter4.java    From Natural-Language-Processing-with-Java-Second-Edition with MIT License 5 votes vote down vote up
private static void usingMultipleNERModels() {
    // Models - en-ner-person.bin en-ner-location.bin en-ner-money.bin 
    // en-ner-organization.bin en-ner-time.bin
    try {
        InputStream tokenStream = new FileInputStream(
                new File(getModelDir(), "en-token.bin"));

        TokenizerModel tokenModel = new TokenizerModel(tokenStream);
        Tokenizer tokenizer = new TokenizerME(tokenModel);

        String modelNames[] = {"en-ner-person.bin", "en-ner-location.bin",
            "en-ner-organization.bin"};
        ArrayList<String> list = new ArrayList();
        for (String name : modelNames) {
            TokenNameFinderModel entityModel = new TokenNameFinderModel(
                    new FileInputStream(
                            new File(getModelDir(), name)));
            NameFinderME nameFinder = new NameFinderME(entityModel);
            for (int index = 0; index < sentences.length; index++) {
                String tokens[] = tokenizer.tokenize(sentences[index]);
                Span nameSpans[] = nameFinder.find(tokens);
                for (Span span : nameSpans) {
                    list.add("Sentence: " + index
                            + " Span: " + span.toString() + " Entity: "
                            + tokens[span.getStart()]);
                }
            }
        }
        System.out.println("Multiple Entities");
        for (String element : list) {
            System.out.println(element);
        }
    } catch (Exception ex) {
        ex.printStackTrace();
    }
}
 
Example #17
Source File: OpenNlpNerRecommender.java    From inception with Apache License 2.0 4 votes vote down vote up
@Override
public EvaluationResult evaluate(List<CAS> aCasses, DataSplitter aDataSplitter)
    throws RecommendationException
{
    List<NameSample> data = extractNameSamples(aCasses);
    List<NameSample> trainingSet = new ArrayList<>();
    List<NameSample> testSet = new ArrayList<>();

    for (NameSample nameSample : data) {
        switch (aDataSplitter.getTargetSet(nameSample)) {
        case TRAIN:
            trainingSet.add(nameSample);
            break;
        case TEST:
            testSet.add(nameSample);
            break;
        default:
            // Do nothing
            break;
        }            
    }
    
    int testSetSize = testSet.size();
    int trainingSetSize = trainingSet.size();
    double overallTrainingSize = data.size() - testSetSize;
    double trainRatio = (overallTrainingSize > 0) ? trainingSetSize / overallTrainingSize : 0.0;

    if (trainingSetSize < 2 || testSetSize < 2) {
        String info = String.format(
                "Not enough evaluation data: training set [%s] items, test set [%s] of total [%s]",
                trainingSetSize, testSetSize, data.size());
        LOG.info(info);
        
        EvaluationResult result = new EvaluationResult(trainingSetSize,
                testSetSize, trainRatio);
        result.setEvaluationSkipped(true);
        result.setErrorMsg(info);
        return result;
    }

    LOG.info("Training on [{}] items, predicting on [{}] of total [{}]", trainingSet.size(),
            testSet.size(), data.size());

    // Train model
    TokenNameFinderModel model = train(trainingSet, traits.getParameters());
    NameFinderME nameFinder = new NameFinderME(model);

    // Evaluate
    List<LabelPair> labelPairs = new ArrayList<>();
    for (NameSample sample : testSet) {
        // clear adaptive data from feature generators if necessary
        if (sample.isClearAdaptiveDataSet()) {
            nameFinder.clearAdaptiveData();
        }

        // Span contains one NE, Array of them all in one sentence
        String[] sentence = sample.getSentence();
        Span[] predictedNames = nameFinder.find(sentence);
        Span[] goldNames = sample.getNames();

        labelPairs.addAll(determineLabelsForASentence(sentence, predictedNames,
                goldNames));

    }

    return labelPairs.stream().collect(EvaluationResult
            .collector(trainingSetSize, testSetSize, trainRatio, NO_NE_TAG));
}
 
Example #18
Source File: OpenNLPOpsFactory.java    From lucene-solr with Apache License 2.0 4 votes vote down vote up
public static NLPNERTaggerOp getNERTagger(String modelName) throws IOException {
  TokenNameFinderModel model = nerModels.get(modelName);
  return new NLPNERTaggerOp(model);
}
 
Example #19
Source File: NLPNERTaggerOp.java    From lucene-solr with Apache License 2.0 4 votes vote down vote up
public NLPNERTaggerOp(TokenNameFinderModel model) {
  this.nameFinder = new NameFinderME(model);
}
 
Example #20
Source File: OpenNlpNerRecommender.java    From inception with Apache License 2.0 4 votes vote down vote up
@Override
public void predict(RecommenderContext aContext, CAS aCas) throws RecommendationException
{
    TokenNameFinderModel model = aContext.get(KEY_MODEL).orElseThrow(() -> 
            new RecommendationException("Key [" + KEY_MODEL + "] not found in context"));
    
    NameFinderME finder = new NameFinderME(model);

    Type sentenceType = getType(aCas, Sentence.class);
    Type tokenType = getType(aCas, Token.class);
    Type predictedType = getPredictedType(aCas);

    Feature predictedFeature = getPredictedFeature(aCas);
    Feature isPredictionFeature = getIsPredictionFeature(aCas);
    Feature scoreFeature = getScoreFeature(aCas);

    int predictionCount = 0;
    for (AnnotationFS sentence : select(aCas, sentenceType)) {
        if (predictionCount >= traits.getPredictionLimit()) {
            break;
        }
        predictionCount++;
        
        List<AnnotationFS> tokenAnnotations = selectCovered(tokenType, sentence);
        String[] tokens = tokenAnnotations.stream()
            .map(AnnotationFS::getCoveredText)
            .toArray(String[]::new);

        for (Span prediction : finder.find(tokens)) {
            String label = prediction.getType();
            if (NameSample.DEFAULT_TYPE.equals(label)) {
                continue;
            }
            int begin = tokenAnnotations.get(prediction.getStart()).getBegin();
            int end = tokenAnnotations.get(prediction.getEnd() - 1).getEnd();
            AnnotationFS annotation = aCas.createAnnotation(predictedType, begin, end);
            annotation.setStringValue(predictedFeature, label);
            annotation.setDoubleValue(scoreFeature, prediction.getProb());
            annotation.setBooleanValue(isPredictionFeature, true);

            aCas.addFsToIndexes(annotation);
        }
    }
}
 
Example #21
Source File: NERDemo.java    From Natural-Language-Processing-with-Java-Second-Edition with MIT License 4 votes vote down vote up
public static void main(String args[]){
    String sentences[] = {"Joe was the last person to see Fred. ", 
        "He saw him in Boston at McKenzie's pub at 3:00 where he " 
        + " paid $2.45 for an ale. ", 
        "Joe wanted to go to Vermont for the day to visit a cousin who " 
        + "works at IBM, but Sally and he had to look for Fred"}; 
    String sentence = "He was the last person to see Fred."; 
    try
    {
        InputStream tokenStream = new FileInputStream(new File(getResourcePath()+ "en-token.bin"));
        InputStream modelStream = new FileInputStream(new File(getResourcePath() + "en-ner-person.bin"));
        TokenizerModel tokenModel = new TokenizerModel(tokenStream);
        Tokenizer tokenizer = new TokenizerME(tokenModel);
        TokenNameFinderModel entityModel = new TokenNameFinderModel(modelStream);
        NameFinderME nameFinder = new NameFinderME(entityModel);
        String tokens1[] = tokenizer.tokenize(sentence);
        Span nameSpans1[] = nameFinder.find(tokens1);
        for (int i = 0; i < nameSpans1.length; i++) { 
            System.out.println("Span: " + nameSpans1[i].toString()); 
            System.out.println("Entity: " 
                + tokens1[nameSpans1[i].getStart()]); 
        } 
        
        System.out.println("---------- Multiple Sentences -----------");
        for (String sentence1 : sentences) { 
            String tokens[] = tokenizer.tokenize(sentence1); 
            Span nameSpans[] = nameFinder.find(tokens); 
            for (int i = 0; i < nameSpans.length; i++) { 
                System.out.println("Span: " + nameSpans[i].toString()); 
                System.out.println("Entity: "  
                    + tokens[nameSpans[i].getStart()]); 
            } 
            System.out.println(); 
        } 
        
    }
    catch(Exception e){
        System.out.println(e);
    }
}
 
Example #22
Source File: Discoverer.java    From DataDefender with Apache License 2.0 4 votes vote down vote up
private Model createModelFrom(TokenNameFinderModel tnf, String modelName) {
    NameFinderME nameFinder = new NameFinderME(tnf);
    return new Model(tokenizer, nameFinder, modelName);
}
 
Example #23
Source File: Discoverer.java    From DataDefender with Apache License 2.0 2 votes vote down vote up
/**
 * Creates model POJO based on OpenNLP model file
 *
 * @param modelName
 * @return Model
 */
public Model createModel(final File modelFile) throws IOException {
    return createModelFrom(new TokenNameFinderModel(modelFile), modelFile.getName());
}
 
Example #24
Source File: Discoverer.java    From DataDefender with Apache License 2.0 2 votes vote down vote up
/**
 * Creates model POJO based on a built-in OpenNLP model
 *
 * @param modelName
 * @return Model
 */
public Model createModel(final String modelName) throws IOException {
    try (InputStream stream = Discoverer.class.getResourceAsStream(BUILT_IN_MODELS.get(modelName))) {
        return createModelFrom(new TokenNameFinderModel(stream), modelName);
    }
}