org.apache.flink.table.sources.tsextractors.ExistingField Java Examples
The following examples show how to use
org.apache.flink.table.sources.tsextractors.ExistingField.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SourceDescriptorTest.java From alchemy with Apache License 2.0 | 6 votes |
@Test public void buildKafkaSource() throws Exception { File file = ResourceUtils.getFile("classpath:yaml/kafka-source.yaml"); SourceDescriptor sourceDescriptor = BindPropertiesUtil.bindProperties(file, SourceDescriptor.class); Kafka010ConnectorDescriptor connectorDescriptor = BindPropertiesUtil.bindProperties(sourceDescriptor.getConnector(), Kafka010ConnectorDescriptor.class); assertThat(connectorDescriptor.getTopic()).isEqualTo("app-log"); assertThat(connectorDescriptor.getStartupMode()).isEqualTo("earliest-offset"); assertThat(connectorDescriptor.getSpecificOffsets().get("1")).isEqualTo("1000"); assertThat(connectorDescriptor.getSpecificOffsets().get("2")).isEqualTo("3000"); assertThat(connectorDescriptor.getProperties().get("bootstrap.servers")).isEqualTo("127.0.0.1:9092"); assertThat(connectorDescriptor.getProperties().get("group.id")).isEqualTo("testGroup"); assertThat(sourceDescriptor.getSchema()).isNotNull(); FormatDescriptor formatDescriptor = sourceDescriptor.getFormat(); KafkaTableSourceBase alchemyKafkaTableSource = connectorDescriptor.buildSource(sourceDescriptor.getSchema(), formatDescriptor); assertThat(alchemyKafkaTableSource).isNotNull(); assertThat(alchemyKafkaTableSource.getProctimeAttribute()).isEqualTo("procTime"); List<RowtimeAttributeDescriptor> rowtimeAttributeDescriptors = alchemyKafkaTableSource.getRowtimeAttributeDescriptors(); assertThat(rowtimeAttributeDescriptors).isNotNull(); assertThat(rowtimeAttributeDescriptors.get(0).getAttributeName()).isEqualTo("rowTime"); assertThat(rowtimeAttributeDescriptors.get(0).getTimestampExtractor()).isInstanceOf(ExistingField.class); assertThat(rowtimeAttributeDescriptors.get(0).getWatermarkStrategy()).isInstanceOf(BoundedOutOfOrderTimestamps.class); DeserializationSchema deserializationSchema = formatDescriptor.transform(new Tuple2<>(alchemyKafkaTableSource.getReturnType(), true)); assertThat(deserializationSchema).isInstanceOf(GrokRowDeserializationSchema.class); }
Example #2
Source File: StreamSQLTestProgram.java From Flink-CEPplus with Apache License 2.0 | 5 votes |
@Override public List<RowtimeAttributeDescriptor> getRowtimeAttributeDescriptors() { return Collections.singletonList( new RowtimeAttributeDescriptor( "rowtime", new ExistingField("ts"), new BoundedOutOfOrderTimestamps(100))); }
Example #3
Source File: UnboundedTransactionTableSource.java From flink with Apache License 2.0 | 5 votes |
@Override public List<RowtimeAttributeDescriptor> getRowtimeAttributeDescriptors() { return Collections.singletonList( new RowtimeAttributeDescriptor( "timestamp", new ExistingField("timestamp"), new BoundedOutOfOrderTimestamps(100))); }
Example #4
Source File: StreamSQLTestProgram.java From flink with Apache License 2.0 | 5 votes |
@Override public List<RowtimeAttributeDescriptor> getRowtimeAttributeDescriptors() { return Collections.singletonList( new RowtimeAttributeDescriptor( "rowtime", new ExistingField("ts"), new BoundedOutOfOrderTimestamps(100))); }
Example #5
Source File: Timestamps.java From alchemy with Apache License 2.0 | 5 votes |
public TimestampExtractor get(){ if(type == null){ return null; } if(type.equals(Type.FIELD.getType())){ return new ExistingField(from); }else if(type.equals(Type.SOURCE.getType())){ return new StreamRecordTimestamp(); } return null; }
Example #6
Source File: PopularTaxiVendor.java From pravega-samples with Apache License 2.0 | 5 votes |
@Override public void handleRequest() { TableSchema tableSchema = TripRecord.getTableSchema(); FlinkPravegaJsonTableSource source = FlinkPravegaJsonTableSource.builder() .forStream(Stream.of(getScope(), getStream()).getScopedName()) .withPravegaConfig(getPravegaConfig()) .failOnMissingField(true) .withRowtimeAttribute("pickupTime", new ExistingField("pickupTime"), new BoundedOutOfOrderTimestamps(30000L)) .withSchema(tableSchema) .withReaderGroupScope(getScope()) .build(); StreamExecutionEnvironment env = getStreamExecutionEnvironment(); // create a TableEnvironment StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); tEnv.registerTableSource("TaxiRide", source); String fields = "vendorId, pickupTime, startLocationId, destLocationId, startLocationBorough, startLocationZone, destLocationBorough, destLocationZone"; Table popularRides = tEnv .scan("TaxiRide") .select(fields) .window(Slide.over("15.minutes").every("5.minutes").on("pickupTime").as("w")) .groupBy("vendorId, w") .select("vendorId, w.start AS start, w.end AS end, count(vendorId) AS cnt"); tEnv.toAppendStream(popularRides, Row.class).print(); try { env.execute("Popular-Taxi-Vendor"); } catch (Exception e) { log.error("Application Failed", e); } }
Example #7
Source File: MaxTravellersPerDestination.java From pravega-samples with Apache License 2.0 | 5 votes |
@Override public void handleRequest() { TableSchema tableSchema = TripRecord.getTableSchema(); FlinkPravegaJsonTableSource source = FlinkPravegaJsonTableSource.builder() .forStream(Stream.of(getScope(), getStream()).getScopedName()) .withPravegaConfig(getPravegaConfig()) .failOnMissingField(true) .withRowtimeAttribute("dropOffTime", new ExistingField("dropOffTime"), new BoundedOutOfOrderTimestamps(30000L)) .withSchema(tableSchema) .withReaderGroupScope(getScope()) .build(); StreamExecutionEnvironment env = getStreamExecutionEnvironment(); // create a TableEnvironment StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); tEnv.registerTableSource("TaxiRide", source); String fields = "passengerCount, dropOffTime, destLocationZone"; Table noOfTravelersPerDest = tEnv .scan("TaxiRide") .select(fields) .window(Tumble.over("1.hour").on("dropOffTime").as("w")) .groupBy("destLocationZone, w") .select("destLocationZone, w.start AS start, w.end AS end, count(passengerCount) AS cnt"); tEnv.toAppendStream(noOfTravelersPerDest, Row.class).print(); try { env.execute("Max-Travellers-Per-Destination"); } catch (Exception e) { log.error("Application Failed", e); } }
Example #8
Source File: StreamSQLTestProgram.java From flink with Apache License 2.0 | 5 votes |
@Override public List<RowtimeAttributeDescriptor> getRowtimeAttributeDescriptors() { return Collections.singletonList( new RowtimeAttributeDescriptor( "rowtime", new ExistingField("ts"), new BoundedOutOfOrderTimestamps(100))); }
Example #9
Source File: KafkaTableSourceSinkFactoryTestBase.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
@Test @SuppressWarnings("unchecked") public void testTableSource() { // prepare parameters for Kafka table source final TableSchema schema = TableSchema.builder() .field(FRUIT_NAME, Types.STRING()) .field(COUNT, Types.DECIMAL()) .field(EVENT_TIME, Types.SQL_TIMESTAMP()) .field(PROC_TIME, Types.SQL_TIMESTAMP()) .build(); final List<RowtimeAttributeDescriptor> rowtimeAttributeDescriptors = Collections.singletonList( new RowtimeAttributeDescriptor(EVENT_TIME, new ExistingField(TIME), new AscendingTimestamps())); final Map<String, String> fieldMapping = new HashMap<>(); fieldMapping.put(FRUIT_NAME, NAME); fieldMapping.put(NAME, NAME); fieldMapping.put(COUNT, COUNT); fieldMapping.put(TIME, TIME); final Map<KafkaTopicPartition, Long> specificOffsets = new HashMap<>(); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_0), OFFSET_0); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_1), OFFSET_1); final TestDeserializationSchema deserializationSchema = new TestDeserializationSchema( TableSchema.builder() .field(NAME, Types.STRING()) .field(COUNT, Types.DECIMAL()) .field(TIME, Types.SQL_TIMESTAMP()) .build() .toRowType() ); final KafkaTableSourceBase expected = getExpectedKafkaTableSource( schema, Optional.of(PROC_TIME), rowtimeAttributeDescriptors, fieldMapping, TOPIC, KAFKA_PROPERTIES, deserializationSchema, StartupMode.SPECIFIC_OFFSETS, specificOffsets); TableSourceUtil.validateTableSource(expected); // construct table source using descriptors and table source factory final TestTableDescriptor testDesc = new TestTableDescriptor( new Kafka() .version(getKafkaVersion()) .topic(TOPIC) .properties(KAFKA_PROPERTIES) .sinkPartitionerRoundRobin() // test if accepted although not needed .startFromSpecificOffsets(OFFSETS)) .withFormat(new TestTableFormat()) .withSchema( new Schema() .field(FRUIT_NAME, Types.STRING()).from(NAME) .field(COUNT, Types.DECIMAL()) // no from so it must match with the input .field(EVENT_TIME, Types.SQL_TIMESTAMP()).rowtime( new Rowtime().timestampsFromField(TIME).watermarksPeriodicAscending()) .field(PROC_TIME, Types.SQL_TIMESTAMP()).proctime()) .inAppendMode(); final Map<String, String> propertiesMap = testDesc.toProperties(); final TableSource<?> actualSource = TableFactoryService.find(StreamTableSourceFactory.class, propertiesMap) .createStreamTableSource(propertiesMap); assertEquals(expected, actualSource); // test Kafka consumer final KafkaTableSourceBase actualKafkaSource = (KafkaTableSourceBase) actualSource; final StreamExecutionEnvironmentMock mock = new StreamExecutionEnvironmentMock(); actualKafkaSource.getDataStream(mock); assertTrue(getExpectedFlinkKafkaConsumer().isAssignableFrom(mock.sourceFunction.getClass())); }
Example #10
Source File: KafkaTableSourceSinkFactoryTestBase.java From flink with Apache License 2.0 | 4 votes |
@Test @SuppressWarnings("unchecked") public void testTableSource() { // prepare parameters for Kafka table source final TableSchema schema = TableSchema.builder() .field(FRUIT_NAME, Types.STRING()) .field(COUNT, Types.DECIMAL()) .field(EVENT_TIME, Types.SQL_TIMESTAMP()) .field(PROC_TIME, Types.SQL_TIMESTAMP()) .build(); final List<RowtimeAttributeDescriptor> rowtimeAttributeDescriptors = Collections.singletonList( new RowtimeAttributeDescriptor(EVENT_TIME, new ExistingField(TIME), new AscendingTimestamps())); final Map<String, String> fieldMapping = new HashMap<>(); fieldMapping.put(FRUIT_NAME, NAME); fieldMapping.put(NAME, NAME); fieldMapping.put(COUNT, COUNT); fieldMapping.put(TIME, TIME); final Map<KafkaTopicPartition, Long> specificOffsets = new HashMap<>(); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_0), OFFSET_0); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_1), OFFSET_1); final TestDeserializationSchema deserializationSchema = new TestDeserializationSchema( TableSchema.builder() .field(NAME, Types.STRING()) .field(COUNT, Types.DECIMAL()) .field(TIME, Types.SQL_TIMESTAMP()) .build() .toRowType() ); final KafkaTableSourceBase expected = getExpectedKafkaTableSource( schema, Optional.of(PROC_TIME), rowtimeAttributeDescriptors, fieldMapping, TOPIC, KAFKA_PROPERTIES, deserializationSchema, StartupMode.SPECIFIC_OFFSETS, specificOffsets); TableSourceValidation.validateTableSource(expected); // construct table source using descriptors and table source factory final TestTableDescriptor testDesc = new TestTableDescriptor( new Kafka() .version(getKafkaVersion()) .topic(TOPIC) .properties(KAFKA_PROPERTIES) .sinkPartitionerRoundRobin() // test if accepted although not needed .startFromSpecificOffsets(OFFSETS)) .withFormat(new TestTableFormat()) .withSchema( new Schema() .field(FRUIT_NAME, Types.STRING()).from(NAME) .field(COUNT, Types.DECIMAL()) // no from so it must match with the input .field(EVENT_TIME, Types.SQL_TIMESTAMP()).rowtime( new Rowtime().timestampsFromField(TIME).watermarksPeriodicAscending()) .field(PROC_TIME, Types.SQL_TIMESTAMP()).proctime()) .inAppendMode(); final Map<String, String> propertiesMap = testDesc.toProperties(); final TableSource<?> actualSource = TableFactoryService.find(StreamTableSourceFactory.class, propertiesMap) .createStreamTableSource(propertiesMap); assertEquals(expected, actualSource); // test Kafka consumer final KafkaTableSourceBase actualKafkaSource = (KafkaTableSourceBase) actualSource; final StreamExecutionEnvironmentMock mock = new StreamExecutionEnvironmentMock(); actualKafkaSource.getDataStream(mock); assertTrue(getExpectedFlinkKafkaConsumer().isAssignableFrom(mock.sourceFunction.getClass())); }
Example #11
Source File: PopularDestinationQuery.java From pravega-samples with Apache License 2.0 | 4 votes |
@Override public void handleRequest() { TableSchema tableSchema = TripRecord.getTableSchema(); FlinkPravegaJsonTableSource source = FlinkPravegaJsonTableSource.builder() .forStream(Stream.of(getScope(), getStream()).getScopedName()) .withPravegaConfig(getPravegaConfig()) .failOnMissingField(true) .withRowtimeAttribute("pickupTime", new ExistingField("pickupTime"), new BoundedOutOfOrderTimestamps(30000L)) .withSchema(tableSchema) .withReaderGroupScope(getScope()) .build(); StreamExecutionEnvironment env = getStreamExecutionEnvironment(); // create a TableEnvironment StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); tEnv.registerTableSource("TaxiRide", source); String query = "SELECT " + "destLocationId, wstart, wend, cnt " + "FROM " + "(SELECT " + "destLocationId, " + "HOP_START(pickupTime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS wstart, " + "HOP_END(pickupTime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS wend, " + "COUNT(destLocationId) AS cnt " + "FROM " + "(SELECT " + "pickupTime, " + "destLocationId " + "FROM TaxiRide) " + "GROUP BY destLocationId, HOP(pickupTime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE)) " + "WHERE cnt > " + getLimit(); Table results = tEnv.sqlQuery(query); tEnv.toAppendStream(results, Row.class).print(); try { env.execute("Popular-Destination"); } catch (Exception e) { log.error("Application Failed", e); } }
Example #12
Source File: KafkaTableSourceSinkFactoryTestBase.java From flink with Apache License 2.0 | 4 votes |
@Test @SuppressWarnings("unchecked") public void testTableSource() { // prepare parameters for Kafka table source final TableSchema schema = TableSchema.builder() .field(FRUIT_NAME, DataTypes.STRING()) .field(COUNT, DataTypes.DECIMAL(38, 18)) .field(EVENT_TIME, DataTypes.TIMESTAMP(3)) .field(PROC_TIME, DataTypes.TIMESTAMP(3)) .build(); final List<RowtimeAttributeDescriptor> rowtimeAttributeDescriptors = Collections.singletonList( new RowtimeAttributeDescriptor(EVENT_TIME, new ExistingField(TIME), new AscendingTimestamps())); final Map<String, String> fieldMapping = new HashMap<>(); fieldMapping.put(FRUIT_NAME, NAME); fieldMapping.put(NAME, NAME); fieldMapping.put(COUNT, COUNT); fieldMapping.put(TIME, TIME); final Map<KafkaTopicPartition, Long> specificOffsets = new HashMap<>(); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_0), OFFSET_0); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_1), OFFSET_1); final TestDeserializationSchema deserializationSchema = new TestDeserializationSchema( TableSchema.builder() .field(NAME, DataTypes.STRING()) .field(COUNT, DataTypes.DECIMAL(38, 18)) .field(TIME, DataTypes.TIMESTAMP(3)) .build().toRowType() ); final KafkaTableSourceBase expected = getExpectedKafkaTableSource( schema, Optional.of(PROC_TIME), rowtimeAttributeDescriptors, fieldMapping, TOPIC, KAFKA_PROPERTIES, deserializationSchema, StartupMode.SPECIFIC_OFFSETS, specificOffsets, 0L); TableSourceValidation.validateTableSource(expected, schema); // construct table source using descriptors and table source factory final Map<String, String> propertiesMap = new HashMap<>(); propertiesMap.putAll(createKafkaSourceProperties()); propertiesMap.put("schema.watermark.0.rowtime", EVENT_TIME); propertiesMap.put("schema.watermark.0.strategy.expr", WATERMARK_EXPRESSION); propertiesMap.put("schema.watermark.0.strategy.data-type", WATERMARK_DATATYPE.toString()); propertiesMap.put("schema.4.name", COMPUTED_COLUMN_NAME); propertiesMap.put("schema.4.data-type", COMPUTED_COLUMN_DATATYPE.toString()); propertiesMap.put("schema.4.expr", COMPUTED_COLUMN_EXPRESSION); final TableSource<?> actualSource = TableFactoryService.find(StreamTableSourceFactory.class, propertiesMap) .createStreamTableSource(propertiesMap); assertEquals(expected, actualSource); // test Kafka consumer final KafkaTableSourceBase actualKafkaSource = (KafkaTableSourceBase) actualSource; final StreamExecutionEnvironmentMock mock = new StreamExecutionEnvironmentMock(); actualKafkaSource.getDataStream(mock); assertTrue(getExpectedFlinkKafkaConsumer().isAssignableFrom(mock.sourceFunction.getClass())); // Test commitOnCheckpoints flag should be true when set consumer group. assertTrue(((FlinkKafkaConsumerBase) mock.sourceFunction).getEnableCommitOnCheckpoints()); }
Example #13
Source File: KafkaTableSourceSinkFactoryTestBase.java From flink with Apache License 2.0 | 4 votes |
@Test @SuppressWarnings("unchecked") public void testTableSourceWithLegacyProperties() { // prepare parameters for Kafka table source final TableSchema schema = TableSchema.builder() .field(FRUIT_NAME, DataTypes.STRING()) .field(COUNT, DataTypes.DECIMAL(38, 18)) .field(EVENT_TIME, DataTypes.TIMESTAMP(3)) .field(PROC_TIME, DataTypes.TIMESTAMP(3)) .build(); final List<RowtimeAttributeDescriptor> rowtimeAttributeDescriptors = Collections.singletonList( new RowtimeAttributeDescriptor(EVENT_TIME, new ExistingField(TIME), new AscendingTimestamps())); final Map<String, String> fieldMapping = new HashMap<>(); fieldMapping.put(FRUIT_NAME, NAME); fieldMapping.put(NAME, NAME); fieldMapping.put(COUNT, COUNT); fieldMapping.put(TIME, TIME); final Map<KafkaTopicPartition, Long> specificOffsets = new HashMap<>(); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_0), OFFSET_0); specificOffsets.put(new KafkaTopicPartition(TOPIC, PARTITION_1), OFFSET_1); final TestDeserializationSchema deserializationSchema = new TestDeserializationSchema( TableSchema.builder() .field(NAME, DataTypes.STRING()) .field(COUNT, DataTypes.DECIMAL(38, 18)) .field(TIME, DataTypes.TIMESTAMP(3)) .build().toRowType() ); final KafkaTableSourceBase expected = getExpectedKafkaTableSource( schema, Optional.of(PROC_TIME), rowtimeAttributeDescriptors, fieldMapping, TOPIC, KAFKA_PROPERTIES, deserializationSchema, StartupMode.SPECIFIC_OFFSETS, specificOffsets, 0L); TableSourceValidation.validateTableSource(expected, schema); // construct table source using descriptors and table source factory final Map<String, String> legacyPropertiesMap = new HashMap<>(); legacyPropertiesMap.putAll(createKafkaSourceProperties()); // use legacy properties legacyPropertiesMap.remove("connector.specific-offsets"); legacyPropertiesMap.remove("connector.properties.bootstrap.servers"); legacyPropertiesMap.remove("connector.properties.group.id"); // keep compatible with a specified update-mode legacyPropertiesMap.put("update-mode", "append"); // legacy properties for specific-offsets and properties legacyPropertiesMap.put("connector.specific-offsets.0.partition", "0"); legacyPropertiesMap.put("connector.specific-offsets.0.offset", "100"); legacyPropertiesMap.put("connector.specific-offsets.1.partition", "1"); legacyPropertiesMap.put("connector.specific-offsets.1.offset", "123"); legacyPropertiesMap.put("connector.properties.0.key", "bootstrap.servers"); legacyPropertiesMap.put("connector.properties.0.value", "dummy"); legacyPropertiesMap.put("connector.properties.1.key", "group.id"); legacyPropertiesMap.put("connector.properties.1.value", "dummy"); final TableSource<?> actualSource = TableFactoryService.find(StreamTableSourceFactory.class, legacyPropertiesMap) .createStreamTableSource(legacyPropertiesMap); assertEquals(expected, actualSource); // test Kafka consumer final KafkaTableSourceBase actualKafkaSource = (KafkaTableSourceBase) actualSource; final StreamExecutionEnvironmentMock mock = new StreamExecutionEnvironmentMock(); actualKafkaSource.getDataStream(mock); assertTrue(getExpectedFlinkKafkaConsumer().isAssignableFrom(mock.sourceFunction.getClass())); }