org.apache.commons.math3.linear.RRQRDecomposition Java Examples

The following examples show how to use org.apache.commons.math3.linear.RRQRDecomposition. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: LinearSystemSolver.java    From oryx with Apache License 2.0 6 votes vote down vote up
/**
 * @param data dense matrix represented in row-major form
 * @return solver for the system Ax = b
 */
static Solver getSolver(double[][] data) {
  if (data == null) {
    return null;
  }
  RealMatrix M = new Array2DRowRealMatrix(data, false);
  double infNorm = M.getNorm();
  double singularityThreshold = infNorm * SINGULARITY_THRESHOLD_RATIO;
  RRQRDecomposition decomposition = new RRQRDecomposition(M, singularityThreshold);
  DecompositionSolver solver = decomposition.getSolver();
  if (solver.isNonSingular()) {
    return new Solver(solver);
  }
  // Otherwise try to report apparent rank
  int apparentRank = decomposition.getRank(0.01); // Better value?
  log.warn("{} x {} matrix is near-singular (threshold {}). Add more data or decrease the " +
           "number of features, to <= about {}",
           M.getRowDimension(), 
           M.getColumnDimension(),
           singularityThreshold,
           apparentRank);
  throw new SingularMatrixSolverException(apparentRank, "Apparent rank: " + apparentRank);
}
 
Example #2
Source File: CommonsMathLinearSystemSolver.java    From myrrix-recommender with Apache License 2.0 6 votes vote down vote up
@Override
public Solver getSolver(RealMatrix M) {
  if (M == null) {
    return null;
  }
  RRQRDecomposition decomposition = new RRQRDecomposition(M, SINGULARITY_THRESHOLD);
  DecompositionSolver solver = decomposition.getSolver();
  if (solver.isNonSingular()) {
    return new CommonsMathSolver(solver);
  }
  // Otherwise try to report apparent rank
  int apparentRank = decomposition.getRank(0.01); // Better value?
  log.warn("{} x {} matrix is near-singular (threshold {}). Add more data or decrease the value of model.features, " +
           "to <= about {}",
           M.getRowDimension(), 
           M.getColumnDimension(), 
           SINGULARITY_THRESHOLD,
           apparentRank);
  throw new SingularMatrixSolverException(apparentRank, "Apparent rank: " + apparentRank);
}
 
Example #3
Source File: OmsCurvaturesBivariate.java    From hortonmachine with GNU General Public License v3.0 5 votes vote down vote up
/**
 * Calculates the parameters of a bivariate quadratic equation.
 * 
 * @param elevationValues the window of points to use.
 * @return the parameters of the bivariate quadratic equation as [a, b, c, d, e, f]
 */
private static double[] calculateParameters( final double[][] elevationValues ) {
    int rows = elevationValues.length;
    int cols = elevationValues[0].length;
    int pointsNum = rows * cols;

    final double[][] xyMatrix = new double[pointsNum][6];
    final double[] valueArray = new double[pointsNum];

    // TODO check on resolution
    int index = 0;
    for( int y = 0; y < rows; y++ ) {
        for( int x = 0; x < cols; x++ ) {
            xyMatrix[index][0] = x * x; // x^2
            xyMatrix[index][1] = y * y; // y^2
            xyMatrix[index][2] = x * y; // xy
            xyMatrix[index][3] = x; // x
            xyMatrix[index][4] = y; // y
            xyMatrix[index][5] = 1;
            valueArray[index] = elevationValues[y][x];
            index++;
        }
    }

    RealMatrix A = MatrixUtils.createRealMatrix(xyMatrix);
    RealVector z = MatrixUtils.createRealVector(valueArray);

    DecompositionSolver solver = new RRQRDecomposition(A).getSolver();
    RealVector solution = solver.solve(z);

    // start values for a, b, c, d, e, f, all set to 0.0
    final double[] parameters = solution.toArray();
    return parameters;
}
 
Example #4
Source File: CommonsMathLinearSystemSolver.java    From myrrix-recommender with Apache License 2.0 4 votes vote down vote up
@Override
public boolean isNonSingular(RealMatrix M) {
  QRDecomposition decomposition = new RRQRDecomposition(M, SINGULARITY_THRESHOLD);
  DecompositionSolver solver = decomposition.getSolver();
  return solver.isNonSingular();
}