org.apache.spark.streaming.StateSpec Java Examples
The following examples show how to use
org.apache.spark.streaming.StateSpec.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: StreamingProcessor.java From lambda-arch with Apache License 2.0 | 6 votes |
private JavaDStream<IoTData> getVehicleNotProcessed(JavaDStream<IoTData> nonFilteredIotDataStream) { //We need filtered stream for total and traffic data calculation JavaPairDStream<String, IoTData> iotDataPairStream = nonFilteredIotDataStream .mapToPair(iot -> new Tuple2<>(iot.getVehicleId(), iot)) .reduceByKey((a, b) -> a); // Check vehicle Id is already processed JavaMapWithStateDStream<String, IoTData, Boolean, Tuple2<IoTData, Boolean>> iotDStreamWithStatePairs = iotDataPairStream .mapWithState( StateSpec.function(processedVehicleFunc).timeout(Durations.seconds(3600)) );//maintain state for one hour // Filter processed vehicle ids and keep un-processed JavaDStream<Tuple2<IoTData, Boolean>> filteredIotDStreams = iotDStreamWithStatePairs .filter(tuple -> tuple._2.equals(Boolean.FALSE)); // Get stream of IoTdata return filteredIotDStreams.map(tuple -> tuple._1); }
Example #2
Source File: RealtimeTrafficDataProcessor.java From lambda-arch with Apache License 2.0 | 5 votes |
/** * Method to get total traffic counts of different type of vehicles for each route. * * @param filteredIotDataStream IoT data stream */ public void processTotalTrafficData(JavaDStream<IoTData> filteredIotDataStream) { // We need to get count of vehicle group by routeId and vehicleType JavaPairDStream<AggregateKey, Long> countDStreamPair = filteredIotDataStream .mapToPair(iot -> new Tuple2<>(new AggregateKey(iot.getRouteId(), iot.getVehicleType()), 1L)) .reduceByKey((a, b) -> a + b); // Need to keep state for total count StateSpec<AggregateKey, Long, Long, Tuple2<AggregateKey, Long>> stateSpec = StateSpec.function(totalSumFunc).timeout(Durations.seconds(3600)); JavaMapWithStateDStream<AggregateKey, Long, Long, Tuple2<AggregateKey, Long>> countDStreamWithStatePair = countDStreamPair.mapWithState(stateSpec);//maintain state for one hour // Transform to dstream of TrafficData JavaDStream<Tuple2<AggregateKey, Long>> countDStream = countDStreamWithStatePair.map(tuple2 -> tuple2); JavaDStream<TotalTrafficData> trafficDStream = countDStream.map(totalTrafficDataFunc); // Map Cassandra table column Map<String, String> columnNameMappings = new HashMap<String, String>(); columnNameMappings.put("routeId", "routeid"); columnNameMappings.put("vehicleType", "vehicletype"); columnNameMappings.put("totalCount", "totalcount"); columnNameMappings.put("timeStamp", "timestamp"); columnNameMappings.put("recordDate", "recorddate"); // call CassandraStreamingJavaUtil function to save in DB javaFunctions(trafficDStream).writerBuilder( "traffickeyspace", "total_traffic", CassandraJavaUtil.mapToRow(TotalTrafficData.class, columnNameMappings) ).saveToCassandra(); }
Example #3
Source File: WordCountSocketStateful.java From Apache-Spark-2x-for-Java-Developers with MIT License | 5 votes |
public static void main(String[] args) throws Exception { System.setProperty("hadoop.home.dir", "E:\\hadoop"); SparkConf sparkConf = new SparkConf().setAppName("WordCountSocketEx").setMaster("local[*]"); JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1)); streamingContext.checkpoint("E:\\hadoop\\checkpoint"); // Initial state RDD input to mapWithState @SuppressWarnings("unchecked") List<Tuple2<String, Integer>> tuples =Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1)); JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples); JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream( "10.0.75.1", Integer.parseInt("9000"), StorageLevels.MEMORY_AND_DISK_SER); JavaDStream<String> words = StreamingLines.flatMap( str -> Arrays.asList(str.split(" ")).iterator() ); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str-> new Tuple2<>(str, 1)).reduceByKey((count1,count2) ->count1+count2 ); // Update the cumulative count function Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() { @Override public Tuple2<String, Integer> call(String word, Optional<Integer> one, State<Integer> state) { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; } }; // DStream made of get cumulative counts that get updated in every batch JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordCounts.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)); stateDstream.print(); streamingContext.start(); streamingContext.awaitTermination(); }
Example #4
Source File: WordCountRecoverableEx.java From Apache-Spark-2x-for-Java-Developers with MIT License | 5 votes |
protected static JavaStreamingContext createContext(String ip, int port, String checkpointDirectory) { SparkConf sparkConf = new SparkConf().setAppName("WordCountRecoverableEx").setMaster("local[*]"); JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1)); streamingContext.checkpoint(checkpointDirectory); // Initial state RDD input to mapWithState @SuppressWarnings("unchecked") List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1)); JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples); JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream(ip,port, StorageLevels.MEMORY_AND_DISK_SER); JavaDStream<String> words = StreamingLines.flatMap(str -> Arrays.asList(str.split(" ")).iterator()); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str -> new Tuple2<>(str, 1)) .reduceByKey((count1, count2) -> count1 + count2); // Update the cumulative count function Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() { @Override public Tuple2<String, Integer> call(String word, Optional<Integer> one, State<Integer> state) { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; } }; // DStream made of get cumulative counts that get updated in every batch JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordCounts .mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)); stateDstream.print(); return streamingContext; }
Example #5
Source File: IoTTrafficDataProcessor.java From iot-traffic-monitor with Apache License 2.0 | 5 votes |
/** * Method to get total traffic counts of different type of vehicles for each route. * * @param filteredIotDataStream IoT data stream */ public void processTotalTrafficData(JavaDStream<IoTData> filteredIotDataStream) { // We need to get count of vehicle group by routeId and vehicleType JavaPairDStream<AggregateKey, Long> countDStreamPair = filteredIotDataStream .mapToPair(iot -> new Tuple2<>(new AggregateKey(iot.getRouteId(), iot.getVehicleType()), 1L)) .reduceByKey((a, b) -> a + b); // Need to keep state for total count JavaMapWithStateDStream<AggregateKey, Long, Long, Tuple2<AggregateKey, Long>> countDStreamWithStatePair = countDStreamPair .mapWithState(StateSpec.function(totalSumFunc).timeout(Durations.seconds(3600)));//maintain state for one hour // Transform to dstream of TrafficData JavaDStream<Tuple2<AggregateKey, Long>> countDStream = countDStreamWithStatePair.map(tuple2 -> tuple2); JavaDStream<TotalTrafficData> trafficDStream = countDStream.map(totalTrafficDataFunc); // Map Cassandra table column Map<String, String> columnNameMappings = new HashMap<String, String>(); columnNameMappings.put("routeId", "routeid"); columnNameMappings.put("vehicleType", "vehicletype"); columnNameMappings.put("totalCount", "totalcount"); columnNameMappings.put("timeStamp", "timestamp"); columnNameMappings.put("recordDate", "recorddate"); // call CassandraStreamingJavaUtil function to save in DB javaFunctions(trafficDStream).writerBuilder("traffickeyspace", "total_traffic", CassandraJavaUtil.mapToRow(TotalTrafficData.class, columnNameMappings)).saveToCassandra(); }
Example #6
Source File: StateFulProcessingExample.java From Apache-Spark-2x-for-Java-Developers with MIT License | 4 votes |
public static void main(String[] args) throws InterruptedException { System.setProperty("hadoop.home.dir", "C:\\softwares\\Winutils"); SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("Stateful Streaming Example") .config("spark.sql.warehouse.dir", "file:////C:/Users/sgulati/spark-warehouse").getOrCreate(); JavaStreamingContext jssc= new JavaStreamingContext(new JavaSparkContext(sparkSession.sparkContext()), Durations.milliseconds(1000)); JavaReceiverInputDStream<String> inStream = jssc.socketTextStream("10.204.136.223", 9999); jssc.checkpoint("C:\\Users\\sgulati\\spark-checkpoint"); JavaDStream<FlightDetails> flightDetailsStream = inStream.map(x -> { ObjectMapper mapper = new ObjectMapper(); return mapper.readValue(x, FlightDetails.class); }); JavaPairDStream<String, FlightDetails> flightDetailsPairStream = flightDetailsStream .mapToPair(f -> new Tuple2<String, FlightDetails>(f.getFlightId(), f)); Function3<String, Optional<FlightDetails>, State<List<FlightDetails>>, Tuple2<String, Double>> mappingFunc = ( flightId, curFlightDetail, state) -> { List<FlightDetails> details = state.exists() ? state.get() : new ArrayList<>(); boolean isLanded = false; if (curFlightDetail.isPresent()) { details.add(curFlightDetail.get()); if (curFlightDetail.get().isLanded()) { isLanded = true; } } Double avgSpeed = details.stream().mapToDouble(f -> f.getTemperature()).average().orElse(0.0); if (isLanded) { state.remove(); } else { state.update(details); } return new Tuple2<String, Double>(flightId, avgSpeed); }; JavaMapWithStateDStream<String, FlightDetails, List<FlightDetails>, Tuple2<String, Double>> streamWithState = flightDetailsPairStream .mapWithState(StateSpec.function(mappingFunc).timeout(Durations.minutes(5))); streamWithState.print(); jssc.start(); jssc.awaitTermination(); }
Example #7
Source File: JavaStatefulNetworkWordCount.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: JavaStatefulNetworkWordCount <hostname> <port>"); System.exit(1); } StreamingExamples.setStreamingLogLevels(); // Create the context with a 1 second batch size SparkConf sparkConf = new SparkConf().setAppName("JavaStatefulNetworkWordCount"); JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1)); ssc.checkpoint("."); // Initial state RDD input to mapWithState @SuppressWarnings("unchecked") List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1)); JavaPairRDD<String, Integer> initialRDD = ssc.sparkContext().parallelizePairs(tuples); JavaReceiverInputDStream<String> lines = ssc.socketTextStream( args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER_2); JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public Iterator<String> call(String x) { return Arrays.asList(SPACE.split(x)).iterator(); } }); JavaPairDStream<String, Integer> wordsDstream = words.mapToPair( new PairFunction<String, String, Integer>() { @Override public Tuple2<String, Integer> call(String s) { return new Tuple2<>(s, 1); } }); // Update the cumulative count function Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() { @Override public Tuple2<String, Integer> call(String word, Optional<Integer> one, State<Integer> state) { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; } }; // DStream made of get cumulative counts that get updated in every batch JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordsDstream.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)); stateDstream.print(); ssc.start(); ssc.awaitTermination(); }
Example #8
Source File: IoTDataProcessor.java From iot-traffic-monitor with Apache License 2.0 | 4 votes |
public static void main(String[] args) throws Exception { //read Spark and Cassandra properties and create SparkConf Properties prop = PropertyFileReader.readPropertyFile(); SparkConf conf = new SparkConf() .setAppName(prop.getProperty("com.iot.app.spark.app.name")) .setMaster(prop.getProperty("com.iot.app.spark.master")) .set("spark.cassandra.connection.host", prop.getProperty("com.iot.app.cassandra.host")) .set("spark.cassandra.connection.port", prop.getProperty("com.iot.app.cassandra.port")) .set("spark.cassandra.connection.keep_alive_ms", prop.getProperty("com.iot.app.cassandra.keep_alive")); //batch interval of 5 seconds for incoming stream JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5)); //add check point directory jssc.checkpoint(prop.getProperty("com.iot.app.spark.checkpoint.dir")); //read and set Kafka properties Map<String, String> kafkaParams = new HashMap<String, String>(); kafkaParams.put("zookeeper.connect", prop.getProperty("com.iot.app.kafka.zookeeper")); kafkaParams.put("metadata.broker.list", prop.getProperty("com.iot.app.kafka.brokerlist")); String topic = prop.getProperty("com.iot.app.kafka.topic"); Set<String> topicsSet = new HashSet<String>(); topicsSet.add(topic); //create direct kafka stream JavaPairInputDStream<String, IoTData> directKafkaStream = KafkaUtils.createDirectStream( jssc, String.class, IoTData.class, StringDecoder.class, IoTDataDecoder.class, kafkaParams, topicsSet ); logger.info("Starting Stream Processing"); //We need non filtered stream for poi traffic data calculation JavaDStream<IoTData> nonFilteredIotDataStream = directKafkaStream.map(tuple -> tuple._2()); //We need filtered stream for total and traffic data calculation JavaPairDStream<String,IoTData> iotDataPairStream = nonFilteredIotDataStream.mapToPair(iot -> new Tuple2<String,IoTData>(iot.getVehicleId(),iot)).reduceByKey((a, b) -> a ); // Check vehicle Id is already processed JavaMapWithStateDStream<String, IoTData, Boolean, Tuple2<IoTData,Boolean>> iotDStreamWithStatePairs = iotDataPairStream .mapWithState(StateSpec.function(processedVehicleFunc).timeout(Durations.seconds(3600)));//maintain state for one hour // Filter processed vehicle ids and keep un-processed JavaDStream<Tuple2<IoTData,Boolean>> filteredIotDStreams = iotDStreamWithStatePairs.map(tuple2 -> tuple2) .filter(tuple -> tuple._2.equals(Boolean.FALSE)); // Get stream of IoTdata JavaDStream<IoTData> filteredIotDataStream = filteredIotDStreams.map(tuple -> tuple._1); //cache stream as it is used in total and window based computation filteredIotDataStream.cache(); //process data IoTTrafficDataProcessor iotTrafficProcessor = new IoTTrafficDataProcessor(); iotTrafficProcessor.processTotalTrafficData(filteredIotDataStream); iotTrafficProcessor.processWindowTrafficData(filteredIotDataStream); //poi data POIData poiData = new POIData(); poiData.setLatitude(33.877495); poiData.setLongitude(-95.50238); poiData.setRadius(30);//30 km //broadcast variables. We will monitor vehicles on Route 37 which are of type Truck Broadcast<Tuple3<POIData, String, String>> broadcastPOIValues = jssc.sparkContext().broadcast(new Tuple3<>(poiData,"Route-37","Truck")); //call method to process stream iotTrafficProcessor.processPOIData(nonFilteredIotDataStream,broadcastPOIValues); //start context jssc.start(); jssc.awaitTermination(); }
Example #9
Source File: SparkUnboundedSource.java From beam with Apache License 2.0 | 4 votes |
public static <T, CheckpointMarkT extends CheckpointMark> UnboundedDataset<T> read( JavaStreamingContext jssc, SerializablePipelineOptions rc, UnboundedSource<T, CheckpointMarkT> source, String stepName) { SparkPipelineOptions options = rc.get().as(SparkPipelineOptions.class); Long maxRecordsPerBatch = options.getMaxRecordsPerBatch(); SourceDStream<T, CheckpointMarkT> sourceDStream = new SourceDStream<>(jssc.ssc(), source, rc, maxRecordsPerBatch); JavaPairInputDStream<Source<T>, CheckpointMarkT> inputDStream = JavaPairInputDStream$.MODULE$.fromInputDStream( sourceDStream, JavaSparkContext$.MODULE$.fakeClassTag(), JavaSparkContext$.MODULE$.fakeClassTag()); // call mapWithState to read from a checkpointable sources. JavaMapWithStateDStream< Source<T>, CheckpointMarkT, Tuple2<byte[], Instant>, Tuple2<Iterable<byte[]>, Metadata>> mapWithStateDStream = inputDStream.mapWithState( StateSpec.function( StateSpecFunctions.<T, CheckpointMarkT>mapSourceFunction(rc, stepName)) .numPartitions(sourceDStream.getNumPartitions())); // set checkpoint duration for read stream, if set. checkpointStream(mapWithStateDStream, options); // report the number of input elements for this InputDStream to the InputInfoTracker. int id = inputDStream.inputDStream().id(); JavaDStream<Metadata> metadataDStream = mapWithStateDStream.map(new Tuple2MetadataFunction()); // register ReadReportDStream to report information related to this read. new ReadReportDStream(metadataDStream.dstream(), id, getSourceName(source, id), stepName) .register(); // output the actual (deserialized) stream. WindowedValue.FullWindowedValueCoder<T> coder = WindowedValue.FullWindowedValueCoder.of( source.getOutputCoder(), GlobalWindow.Coder.INSTANCE); JavaDStream<WindowedValue<T>> readUnboundedStream = mapWithStateDStream .flatMap(new Tuple2byteFlatMapFunction()) .map(CoderHelpers.fromByteFunction(coder)); return new UnboundedDataset<>(readUnboundedStream, Collections.singletonList(id)); }
Example #10
Source File: WordCountingAppWithCheckpoint.java From tutorials with MIT License | 4 votes |
public static void main(String[] args) throws InterruptedException { Logger.getLogger("org") .setLevel(Level.OFF); Logger.getLogger("akka") .setLevel(Level.OFF); Map<String, Object> kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", "localhost:9092"); kafkaParams.put("key.deserializer", StringDeserializer.class); kafkaParams.put("value.deserializer", StringDeserializer.class); kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream"); kafkaParams.put("auto.offset.reset", "latest"); kafkaParams.put("enable.auto.commit", false); Collection<String> topics = Arrays.asList("messages"); SparkConf sparkConf = new SparkConf(); sparkConf.setMaster("local[2]"); sparkConf.setAppName("WordCountingAppWithCheckpoint"); sparkConf.set("spark.cassandra.connection.host", "127.0.0.1"); JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1)); sparkContext = streamingContext.sparkContext(); streamingContext.checkpoint("./.checkpoint"); JavaInputDStream<ConsumerRecord<String, String>> messages = KafkaUtils.createDirectStream(streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams)); JavaPairDStream<String, String> results = messages.mapToPair(record -> new Tuple2<>(record.key(), record.value())); JavaDStream<String> lines = results.map(tuple2 -> tuple2._2()); JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split("\\s+")) .iterator()); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(s -> new Tuple2<>(s, 1)) .reduceByKey((Function2<Integer, Integer, Integer>) (i1, i2) -> i1 + i2); JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> cumulativeWordCounts = wordCounts.mapWithState(StateSpec.function((word, one, state) -> { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; })); cumulativeWordCounts.foreachRDD(javaRdd -> { List<Tuple2<String, Integer>> wordCountList = javaRdd.collect(); for (Tuple2<String, Integer> tuple : wordCountList) { List<Word> wordList = Arrays.asList(new Word(tuple._1, tuple._2)); JavaRDD<Word> rdd = sparkContext.parallelize(wordList); javaFunctions(rdd).writerBuilder("vocabulary", "words", mapToRow(Word.class)) .saveToCassandra(); } }); streamingContext.start(); streamingContext.awaitTermination(); }