weka.core.AdditionalMeasureProducer Java Examples
The following examples show how to use
weka.core.AdditionalMeasureProducer.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: AttributeSelectedClassifier.java From tsml with GNU General Public License v3.0 | 6 votes |
/** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(3); newVector.addElement("measureNumAttributesSelected"); newVector.addElement("measureSelectionTime"); newVector.addElement("measureTime"); if (m_Classifier instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_Classifier). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); }
Example #2
Source File: AttributeSelectedClassifier.java From tsml with GNU General Public License v3.0 | 6 votes |
/** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureNumAttributesSelected") == 0) { return measureNumAttributesSelected(); } else if (additionalMeasureName.compareToIgnoreCase("measureSelectionTime") == 0) { return measureSelectionTime(); } else if (additionalMeasureName.compareToIgnoreCase("measureTime") == 0) { return measureTime(); } else if (m_Classifier instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer)m_Classifier). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (AttributeSelectedClassifier)"); } }
Example #3
Source File: InputMappedClassifier.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(); if (m_Classifier instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_Classifier). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); }
Example #4
Source File: InputMappedClassifier.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (m_Classifier instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer)m_Classifier). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (InputMappedClassifier)"); } }
Example #5
Source File: CollectiveForest.java From collective-classification-weka-package with GNU General Public License v3.0 | 4 votes |
/** * performs the actual building of the classifier * * @throws Exception if building fails */ @Override protected void buildClassifier() throws Exception { Classifier tree; int i; int n; int nextSeed; double[] dist; Instances bagData; boolean[] inBag; double outOfBagCount; double errorSum; Instance outOfBagInst; m_PureTrainNodes = 0; m_PureTestNodes = 0; for (i = 0; i < getNumTrees(); i++) { // info if (getVerbose()) System.out.print("."); // get next seed number nextSeed = m_Random.nextInt(); // bagging? if (getUseBagging()) { // inBag-dataset/array inBag = new boolean[m_TrainsetNew.numInstances()]; bagData = resample(m_TrainsetNew, nextSeed, inBag); // build i.th tree tree = initClassifier(nextSeed); // determine and store distributions for (n = 0; n < m_TestsetNew.numInstances(); n++) { dist = tree.distributionForInstance(m_TestsetNew.instance(n)); m_List.addDistribution(m_TestsetNew.instance(n), dist); } // determine out-of-bag-error outOfBagCount = 0; errorSum = 0; for (n = 0; n < inBag.length; n++) { if (!inBag[n]) { outOfBagInst = m_TrainsetNew.instance(n); outOfBagCount += outOfBagInst.weight(); if (m_TrainsetNew.classAttribute().isNumeric()) { errorSum += outOfBagInst.weight() * StrictMath.abs(tree.classifyInstance(outOfBagInst) - outOfBagInst.classValue()); } else { if (tree.classifyInstance(outOfBagInst) != outOfBagInst.classValue()) { errorSum += outOfBagInst.weight(); } } } } m_OutOfBagError = errorSum / outOfBagCount; } else { // build i.th tree tree = initClassifier(nextSeed); // determine and store distributions for (n = 0; n < m_TestsetNew.numInstances(); n++) { dist = tree.distributionForInstance(m_TestsetNew.instance(n)); m_List.addDistribution(m_TestsetNew.instance(n), dist); } } // get information about pure nodes try { if (tree instanceof AdditionalMeasureProducer) { m_PureTrainNodes += ((AdditionalMeasureProducer) tree).getMeasure( "measurePureTrainNodes"); m_PureTestNodes += ((AdditionalMeasureProducer) tree).getMeasure( "measurePureTestNodes"); } } catch (Exception e) { e.printStackTrace(); } tree = null; } if (getVerbose()) System.out.println(); }