org.apache.commons.math3.optim.SimplePointChecker Java Examples

The following examples show how to use org.apache.commons.math3.optim.SimplePointChecker. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testOptimumOutsideRange() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
        =  new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                  biQuadratic.getLower(),
                                                  biQuadratic.getUpper(),
                                                  1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-11, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(600),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #2
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testHalfBounded() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0,
                                                    1.0, Double.POSITIVE_INFINITY,
                                                    Double.NEGATIVE_INFINITY, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
          = new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                   biQuadratic.getLower(),
                                                   biQuadratic.getUpper(),
                                                   1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(400),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #3
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testOptimumOutsideRange() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
        =  new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                  biQuadratic.getLower(),
                                                  biQuadratic.getUpper(),
                                                  1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-11, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(600),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #4
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testHalfBounded() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0,
                                                    1.0, Double.POSITIVE_INFINITY,
                                                    Double.NEGATIVE_INFINITY, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
          = new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                   biQuadratic.getLower(),
                                                   biQuadratic.getUpper(),
                                                   1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(400),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #5
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testOptimumOutsideRange() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
        =  new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                  biQuadratic.getLower(),
                                                  biQuadratic.getUpper(),
                                                  1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-11, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(600),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #6
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testHalfBounded() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0,
                                                    1.0, Double.POSITIVE_INFINITY,
                                                    Double.NEGATIVE_INFINITY, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
          = new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                   biQuadratic.getLower(),
                                                   biQuadratic.getUpper(),
                                                   1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(400),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #7
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testOptimumOutsideRange() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
        =  new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                  biQuadratic.getLower(),
                                                  biQuadratic.getUpper(),
                                                  1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-11, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(600),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #8
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testHalfBounded() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0,
                                                    1.0, Double.POSITIVE_INFINITY,
                                                    Double.NEGATIVE_INFINITY, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
          = new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                   biQuadratic.getLower(),
                                                   biQuadratic.getUpper(),
                                                   1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(400),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #9
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testOptimumOutsideRange() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 0.0, 1.0, 3.0, 2.0, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
        =  new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                  biQuadratic.getLower(),
                                                  biQuadratic.getUpper(),
                                                  1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-11, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(600),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #10
Source File: MultivariateFunctionPenaltyAdapterTest.java    From astor with GNU General Public License v2.0 6 votes vote down vote up
@Test
public void testHalfBounded() {
    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0,
                                                    1.0, Double.POSITIVE_INFINITY,
                                                    Double.NEGATIVE_INFINITY, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped
          = new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                   biQuadratic.getLower(),
                                                   biQuadratic.getUpper(),
                                                   1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
    final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

    final PointValuePair optimum
        = optimizer.optimize(new MaxEval(400),
                             new ObjectiveFunction(wrapped),
                             simplex,
                             GoalType.MINIMIZE,
                             new InitialGuess(new double[] { -1.5, 4.0 }));

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);
}
 
Example #11
Source File: OptimizerFactoryCMAES.java    From finmath-lib with Apache License 2.0 4 votes vote down vote up
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, final double[] lowerBound,final double[]  upperBound, final double[] parameterStep, final double[] targetValues) {
	final double[] values = new double[targetValues.length];
	final double[] effectiveParameterLowerBound			= parameterLowerBound != null ? parameterLowerBound : lowerBound;
	final double[] effectiveParameterUpperBound			= parameterUppderBound != null ? parameterUppderBound : upperBound;
	final double[] effectiveParameterStandardDeviation	= parameterStandardDeviation != null ? parameterStandardDeviation : parameterStep;

	// Throw exception if std dev is non null, but lower bound / upper bound are null.
	return new Optimizer() {

		private org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer optimizer;
		private org.apache.commons.math3.optim.PointValuePair result;

		@Override
		public double[] getBestFitParameters() {
			return result.getPoint();
		}

		@Override
		public double getRootMeanSquaredError() {
			return result.getValue();
		}

		@Override
		public int getIterations() {
			return optimizer != null ? optimizer.getIterations() : 0;
		}

		@Override
		public void run() {
			optimizer = new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer(maxIterations, accuracy, true, 0, 0, new MersenneTwister(3141), false, new SimplePointChecker<org.apache.commons.math3.optim.PointValuePair>(0, 0)) {
				@Override
				public double computeObjectiveValue(final double[] parameters) {
					try {
						objectiveFunction.setValues(parameters, values);
					} catch (final SolverException e) {
						return Double.NaN;
					}
					double rms = 0;
					for(final double value : values) {
						rms += value*value;
					}
					return Math.sqrt(rms);
				}

				@Override
				public org.apache.commons.math3.optim.nonlinear.scalar.GoalType getGoalType() {
					return org.apache.commons.math3.optim.nonlinear.scalar.GoalType.MINIMIZE;
				}

				@Override
				public double[] getStartPoint() {
					return initialParameters;
				}

				@Override
				public double[] getLowerBound() {
					return effectiveParameterLowerBound;
				}

				@Override
				public double[] getUpperBound() {
					return effectiveParameterUpperBound;
				}
			};

			try {
				result = optimizer.optimize(
						new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.PopulationSize((int) (4 + 3 * Math.log(initialParameters.length))),
						new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.Sigma(effectiveParameterStandardDeviation)
						);
			} catch(final org.apache.commons.math3.exception.MathIllegalStateException e) {
				new SolverException(e);
			}
		}
	};
}
 
Example #12
Source File: OptimizerFactoryCMAES.java    From finmath-lib with Apache License 2.0 4 votes vote down vote up
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, final double[] lowerBound,final double[]  upperBound, final double[] parameterStep, final double[] targetValues) {
	final double[] values = new double[targetValues.length];
	final double[] effectiveParameterLowerBound			= parameterLowerBound != null ? parameterLowerBound : lowerBound;
	final double[] effectiveParameterUpperBound			= parameterUppderBound != null ? parameterUppderBound : upperBound;
	final double[] effectiveParameterStandardDeviation	= parameterStandardDeviation != null ? parameterStandardDeviation : parameterStep;

	// Throw exception if std dev is non null, but lower bound / upper bound are null.
	return new Optimizer() {

		private org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer optimizer;
		private org.apache.commons.math3.optim.PointValuePair result;

		@Override
		public double[] getBestFitParameters() {
			return result.getPoint();
		}

		@Override
		public double getRootMeanSquaredError() {
			return result.getValue();
		}

		@Override
		public int getIterations() {
			return optimizer != null ? optimizer.getIterations() : 0;
		}

		@Override
		public void run() {
			optimizer = new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer(maxIterations, accuracy, true, 0, 0, new MersenneTwister(3141), false, new SimplePointChecker<org.apache.commons.math3.optim.PointValuePair>(0, 0)) {
				@Override
				public double computeObjectiveValue(final double[] parameters) {
					try {
						objectiveFunction.setValues(parameters, values);
					} catch (final SolverException e) {
						return Double.NaN;
					}
					double rms = 0;
					for(final double value : values) {
						rms += value*value;
					}
					return Math.sqrt(rms);
				}

				@Override
				public org.apache.commons.math3.optim.nonlinear.scalar.GoalType getGoalType() {
					return org.apache.commons.math3.optim.nonlinear.scalar.GoalType.MINIMIZE;
				}

				@Override
				public double[] getStartPoint() {
					return initialParameters;
				}

				@Override
				public double[] getLowerBound() {
					return effectiveParameterLowerBound;
				}

				@Override
				public double[] getUpperBound() {
					return effectiveParameterUpperBound;
				}
			};

			try {
				result = optimizer.optimize(
						new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.PopulationSize((int) (4 + 3 * Math.log(initialParameters.length))),
						new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.Sigma(effectiveParameterStandardDeviation)
						);
			} catch(final org.apache.commons.math3.exception.MathIllegalStateException e) {
				new SolverException(e);
			}
		}
	};
}