org.dmg.pmml.MapValues Java Examples
The following examples show how to use
org.dmg.pmml.MapValues.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: FormulaUtil.java From jpmml-r with GNU Affero General Public License v3.0 | 6 votes |
static private MapValues createMapValues(FieldName name, Map<String, String> mapping, List<String> categories){ Set<String> inputs = new LinkedHashSet<>(mapping.keySet()); Set<String> outputs = new LinkedHashSet<>(mapping.values()); for(String category : categories){ // Assume disjoint input and output value spaces if(outputs.contains(category)){ continue; } mapping.put(category, category); } return PMMLUtil.createMapValues(name, mapping); }
Example #2
Source File: ExpressionUtil.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 6 votes |
static public FieldValue evaluateMapValues(MapValues mapValues, EvaluationContext context){ Map<String, FieldValue> values = new LinkedHashMap<>(); List<FieldColumnPair> fieldColumnPairs = mapValues.getFieldColumnPairs(); for(FieldColumnPair fieldColumnPair : fieldColumnPairs){ FieldName name = fieldColumnPair.getField(); if(name == null){ throw new MissingAttributeException(fieldColumnPair, PMMLAttributes.FIELDCOLUMNPAIR_FIELD); } String column = fieldColumnPair.getColumn(); if(column == null){ throw new MissingAttributeException(fieldColumnPair, PMMLAttributes.FIELDCOLUMNPAIR_COLUMN); } FieldValue value = context.evaluate(name); if(FieldValueUtil.isMissing(value)){ return FieldValueUtil.create(mapValues.getDataType(DataType.STRING), OpType.CATEGORICAL, mapValues.getMapMissingTo()); } values.put(column, value); } return DiscretizationUtil.mapValue(mapValues, values); }
Example #3
Source File: DiscretizationUtil.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 6 votes |
static public FieldValue mapValue(MapValues mapValues, Map<String, FieldValue> values){ String outputColumn = mapValues.getOutputColumn(); if(outputColumn == null){ throw new MissingAttributeException(mapValues, PMMLAttributes.MAPVALUES_OUTPUTCOLUMN); } DataType dataType = mapValues.getDataType(DataType.STRING); InlineTable inlineTable = InlineTableUtil.getInlineTable(mapValues); if(inlineTable != null){ Map<String, Object> row = match(inlineTable, values); if(row != null){ Object result = row.get(outputColumn); if(result == null){ throw new InvalidElementException(inlineTable); } return FieldValueUtil.create(dataType, OpType.CATEGORICAL, result); } } return FieldValueUtil.create(dataType, OpType.CATEGORICAL, mapValues.getDefaultValue()); }
Example #4
Source File: ExpressionUtilTest.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 6 votes |
@Test public void evaluateMapValues(){ FieldName name = FieldName.create("x"); List<List<String>> rows = Arrays.asList( Arrays.asList("0", "zero"), Arrays.asList("1", "one") ); MapValues mapValues = new MapValues("data:output", null, createInlineTable(rows, Arrays.asList("data:input", "data:output"))) .addFieldColumnPairs(new FieldColumnPair(name, "data:input")); assertEquals("zero", evaluate(mapValues, name, "0")); assertEquals("one", evaluate(mapValues, name, "1")); assertEquals(null, evaluate(mapValues, name, "3")); assertEquals(null, evaluate(mapValues, name, null)); mapValues.setMapMissingTo("Missing"); assertEquals("Missing", evaluate(mapValues, name, null)); mapValues.setDefaultValue("Default"); assertEquals("Default", evaluate(mapValues, name, "3")); }
Example #5
Source File: EncoderUtil.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
static public Feature encodeIndexFeature(Feature feature, List<?> categories, List<? extends Number> indexCategories, Number mapMissingTo, Number defaultValue, DataType dataType, SkLearnEncoder encoder){ ClassDictUtil.checkSize(categories, indexCategories); encoder.toCategorical(feature.getName(), categories); Supplier<MapValues> mapValuesSupplier = () -> { MapValues mapValues = PMMLUtil.createMapValues(feature.getName(), categories, indexCategories) .setMapMissingTo(mapMissingTo) .setDefaultValue(defaultValue); return mapValues; }; DerivedField derivedField = encoder.ensureDerivedField(FeatureUtil.createName("encoder", feature), OpType.CATEGORICAL, dataType, mapValuesSupplier); Feature encodedFeature = new IndexFeature(encoder, derivedField, indexCategories); Feature result = new CategoricalFeature(encoder, feature, categories){ @Override public ContinuousFeature toContinuousFeature(){ return encodedFeature.toContinuousFeature(); } }; return result; }
Example #6
Source File: VectorIndexerModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ VectorIndexerModel transformer = getTransformer(); int numFeatures = transformer.numFeatures(); List<Feature> features = encoder.getFeatures(transformer.getInputCol()); SchemaUtil.checkSize(numFeatures, features); Map<Integer, Map<Double, Integer>> categoryMaps = transformer.javaCategoryMaps(); List<Feature> result = new ArrayList<>(); for(int i = 0, length = numFeatures; i < length; i++){ Feature feature = features.get(i); Map<Double, Integer> categoryMap = categoryMaps.get(i); if(categoryMap != null){ List<Double> categories = new ArrayList<>(); List<Integer> values = new ArrayList<>(); List<Map.Entry<Double, Integer>> entries = new ArrayList<>(categoryMap.entrySet()); Collections.sort(entries, VectorIndexerModelConverter.COMPARATOR); for(Map.Entry<Double, Integer> entry : entries){ Double category = entry.getKey(); Integer value = entry.getValue(); categories.add(category); values.add(value); } encoder.toCategorical(feature.getName(), categories); MapValues mapValues = PMMLUtil.createMapValues(feature.getName(), categories, values) .setDataType(DataType.INTEGER); DerivedField derivedField = encoder.createDerivedField(formatName(transformer, i, length), OpType.CATEGORICAL, DataType.INTEGER, mapValues); result.add(new CategoricalFeature(encoder, derivedField, values)); } else { result.add((ContinuousFeature)feature); } } return result; }
Example #7
Source File: RegressionTableUtil.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
static private MapValues createMapValues(FieldName name, Object identifier, List<Feature> features, List<Double> coefficients){ ListIterator<Feature> featureIt = features.listIterator(); ListIterator<Double> coefficientIt = coefficients.listIterator(); PMMLEncoder encoder = null; List<Object> inputValues = new ArrayList<>(); List<Double> outputValues = new ArrayList<>(); while(featureIt.hasNext()){ Feature feature = featureIt.next(); Double coefficient = coefficientIt.next(); if(!(feature instanceof BinaryFeature)){ continue; } BinaryFeature binaryFeature = (BinaryFeature)feature; if(!(name).equals(binaryFeature.getName())){ continue; } featureIt.remove(); coefficientIt.remove(); if(encoder == null){ encoder = binaryFeature.getEncoder(); } inputValues.add(binaryFeature.getValue()); outputValues.add(coefficient); } MapValues mapValues = PMMLUtil.createMapValues(name, inputValues, outputValues) .setDefaultValue(0d) .setDataType(DataType.DOUBLE); DerivedField derivedField = encoder.createDerivedField(FieldName.create("lookup(" + name.getValue() + (identifier != null ? (", " + identifier) : "") + ")"), OpType.CONTINUOUS, DataType.DOUBLE, mapValues); featureIt.add(new ContinuousFeature(encoder, derivedField)); coefficientIt.add(1d); return mapValues; }
Example #8
Source File: ValueParser.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 4 votes |
@Override public VisitorAction visit(MapValues mapValues){ parseExpressionValues(mapValues); return super.visit(mapValues); }
Example #9
Source File: ExpressionUtil.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 4 votes |
static FieldValue evaluateExpression(Expression expression, EvaluationContext context){ if(expression instanceof Constant){ return evaluateConstant((Constant)expression); } else if(expression instanceof FieldRef){ return evaluateFieldRef((FieldRef)expression, context); } else if(expression instanceof NormContinuous){ return evaluateNormContinuous((NormContinuous)expression, context); } else if(expression instanceof NormDiscrete){ return evaluateNormDiscrete((NormDiscrete)expression, context); } else if(expression instanceof Discretize){ return evaluateDiscretize((Discretize)expression, context); } else if(expression instanceof MapValues){ return evaluateMapValues((MapValues)expression, context); } else if(expression instanceof TextIndex){ return evaluateTextIndex((TextIndex)expression, context); } else if(expression instanceof Apply){ return evaluateApply((Apply)expression, context); } else if(expression instanceof Aggregate){ return evaluateAggregate((Aggregate)expression, context); } // End if if(expression instanceof JavaExpression){ return evaluateJavaExpression((JavaExpression)expression, context); } throw new UnsupportedElementException(expression); }
Example #10
Source File: ClassificationModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 2 votes |
@Override public List<OutputField> registerOutputFields(Label label, Model pmmlModel, SparkMLEncoder encoder){ T model = getTransformer(); CategoricalLabel categoricalLabel = (CategoricalLabel)label; List<Integer> categories = LabelUtil.createTargetCategories(categoricalLabel.size()); String predictionCol = model.getPredictionCol(); Boolean keepPredictionCol = (Boolean)getOption(HasPredictionModelOptions.OPTION_KEEP_PREDICTIONCOL, Boolean.TRUE); OutputField pmmlPredictedOutputField = ModelUtil.createPredictedField(FieldName.create("pmml(" + predictionCol + ")"), OpType.CATEGORICAL, categoricalLabel.getDataType()) .setFinalResult(false); DerivedOutputField pmmlPredictedField = encoder.createDerivedField(pmmlModel, pmmlPredictedOutputField, keepPredictionCol); MapValues mapValues = PMMLUtil.createMapValues(pmmlPredictedField.getName(), categoricalLabel.getValues(), categories) .setDataType(DataType.DOUBLE); OutputField predictedOutputField = new OutputField(FieldName.create(predictionCol), OpType.CONTINUOUS, DataType.DOUBLE) .setResultFeature(ResultFeature.TRANSFORMED_VALUE) .setExpression(mapValues); DerivedOutputField predictedField = encoder.createDerivedField(pmmlModel, predictedOutputField, keepPredictionCol); encoder.putOnlyFeature(predictionCol, new IndexFeature(encoder, predictedField, categories)); List<OutputField> result = new ArrayList<>(); if(model instanceof HasProbabilityCol){ HasProbabilityCol hasProbabilityCol = (HasProbabilityCol)model; String probabilityCol = hasProbabilityCol.getProbabilityCol(); List<Feature> features = new ArrayList<>(); for(int i = 0; i < categoricalLabel.size(); i++){ Object value = categoricalLabel.getValue(i); OutputField probabilityField = ModelUtil.createProbabilityField(FieldName.create(probabilityCol + "(" + value + ")"), DataType.DOUBLE, value); result.add(probabilityField); features.add(new ContinuousFeature(encoder, probabilityField)); } // XXX encoder.putFeatures(probabilityCol, features); } return result; }