org.apache.crunch.types.avro.Avros Java Examples
The following examples show how to use
org.apache.crunch.types.avro.Avros.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: JoinFilterExampleCrunch.java From hadoop-arch-book with Apache License 2.0 | 5 votes |
public int run(String[] args) throws Exception { String fooInputPath = args[0]; String barInputPath = args[1]; String outputPath = args[2]; int fooValMax = Integer.parseInt(args[3]); int joinValMax = Integer.parseInt(args[4]); int numberOfReducers = Integer.parseInt(args[5]); Pipeline pipeline = new MRPipeline(JoinFilterExampleCrunch.class, getConf()); //<1> PCollection<String> fooLines = pipeline.readTextFile(fooInputPath); //<2> PCollection<String> barLines = pipeline.readTextFile(barInputPath); PTable<Long, Pair<Long, Integer>> fooTable = fooLines.parallelDo( //<3> new FooIndicatorFn(), Avros.tableOf(Avros.longs(), Avros.pairs(Avros.longs(), Avros.ints()))); fooTable = fooTable.filter(new FooFilter(fooValMax)); //<4> PTable<Long, Integer> barTable = barLines.parallelDo(new BarIndicatorFn(), Avros.tableOf(Avros.longs(), Avros.ints())); DefaultJoinStrategy<Long, Pair<Long, Integer>, Integer> joinStrategy = //<5> new DefaultJoinStrategy <Long, Pair<Long, Integer>, Integer> (numberOfReducers); PTable<Long, Pair<Pair<Long, Integer>, Integer>> joinedTable = joinStrategy //<6> .join(fooTable, barTable, JoinType.INNER_JOIN); PTable<Long, Pair<Pair<Long, Integer>, Integer>> filteredTable = joinedTable.filter(new JoinFilter(joinValMax)); filteredTable.write(At.textFile(outputPath), WriteMode.OVERWRITE); //<7> PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example #2
Source File: LegacyHdfs2Cass.java From hdfs2cass with Apache License 2.0 | 5 votes |
@Override public int run(String[] args) throws Exception { new JCommander(this, args); URI outputUri = URI.create(output); // Our crunch job is a MapReduce job Pipeline pipeline = new MRPipeline(LegacyHdfs2Cass.class, getConf()); // Parse & fetch info about target Cassandra cluster CassandraParams params = CassandraParams.parse(outputUri); // Read records from Avro files in inputFolder PCollection<ByteBuffer> records = pipeline.read(From.avroFile(inputList(input), Avros.records(ByteBuffer.class))); // Transform the input String protocol = outputUri.getScheme(); if (protocol.equalsIgnoreCase("thrift")) { records // First convert ByteBuffers to ThriftRecords .parallelDo(new LegacyHdfsToThrift(), ThriftRecord.PTYPE) // Then group the ThriftRecords in preparation for writing them .parallelDo(new ThriftRecord.AsPair(), ThriftRecord.AsPair.PTYPE) .groupByKey(params.createGroupingOptions()) // Finally write the ThriftRecords to Cassandra .write(new ThriftTarget(outputUri, params)); } else if (protocol.equalsIgnoreCase("cql")) { records // In case of CQL, convert ByteBuffers to CQLRecords .parallelDo(new LegacyHdfsToCQL(), CQLRecord.PTYPE) .by(params.getKeyFn(), Avros.bytes()) .groupByKey(params.createGroupingOptions()) .write(new CQLTarget(outputUri, params)); } // Execute the pipeline PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example #3
Source File: TransformTask.java From kite with Apache License 2.0 | 5 votes |
@SuppressWarnings("unchecked") private static <T> AvroType<T> ptype(View<T> view) { Class<T> recordClass = view.getType(); if (GenericRecord.class.isAssignableFrom(recordClass)) { return (AvroType<T>) Avros.generics( view.getDataset().getDescriptor().getSchema()); } else { return Avros.records(recordClass); } }
Example #4
Source File: DatasetSourceTarget.java From kite with Apache License 2.0 | 5 votes |
@SuppressWarnings("unchecked") private static <E> AvroType<E> toAvroType(View<E> view, Class<E> type) { if (type.isAssignableFrom(GenericData.Record.class)) { return (AvroType<E>) Avros.generics( view.getDataset().getDescriptor().getSchema()); } else { return Avros.records(type); } }
Example #5
Source File: CrunchDatasets.java From kite with Apache License 2.0 | 5 votes |
private static <E> PCollection<E> partition(PCollection<E> collection, int numReducers) { PType<E> type = collection.getPType(); PTableType<E, Void> tableType = Avros.tableOf(type, Avros.nulls()); PTable<E, Void> table = collection.parallelDo(new AsKeyTable<E>(), tableType); PGroupedTable<E, Void> grouped = numReducers > 0 ? table.groupByKey(numReducers) : table.groupByKey(); return grouped.ungroup().keys(); }
Example #6
Source File: CreateSessions.java From kite-examples with Apache License 2.0 | 4 votes |
@Override public int run(String[] args) throws Exception { // Turn debug on while in development. getPipeline().enableDebug(); getPipeline().getConfiguration().set("crunch.log.job.progress", "true"); Dataset<StandardEvent> eventsDataset = Datasets.load( "dataset:hdfs:/tmp/data/default/events", StandardEvent.class); View<StandardEvent> eventsToProcess; if (args.length == 0 || (args.length == 1 && args[0].equals("LATEST"))) { // get the current minute Calendar cal = Calendar.getInstance(TimeZone.getTimeZone("UTC")); cal.set(Calendar.SECOND, 0); cal.set(Calendar.MILLISECOND, 0); long currentMinute = cal.getTimeInMillis(); // restrict events to before the current minute // in the workflow, this also has a lower bound for the timestamp eventsToProcess = eventsDataset.toBefore("timestamp", currentMinute); } else if (isView(args[0])) { eventsToProcess = Datasets.load(args[0], StandardEvent.class); } else { eventsToProcess = FileSystemDatasets.viewForPath(eventsDataset, new Path(args[0])); } if (eventsToProcess.isEmpty()) { LOG.info("No records to process."); return 0; } // Create a parallel collection from the working partition PCollection<StandardEvent> events = read( CrunchDatasets.asSource(eventsToProcess)); // Group events by user and cookie id, then create a session for each group PCollection<Session> sessions = events .by(new GetSessionKey(), Avros.strings()) .groupByKey() .parallelDo(new MakeSession(), Avros.specifics(Session.class)); // Write the sessions to the "sessions" Dataset getPipeline().write(sessions, CrunchDatasets.asTarget("dataset:hive:/tmp/data/default/sessions"), Target.WriteMode.APPEND); return run().succeeded() ? 0 : 1; }
Example #7
Source File: Hdfs2Cass.java From hdfs2cass with Apache License 2.0 | 4 votes |
@Override public int run(String[] args) throws Exception { new JCommander(this, args); URI outputUri = URI.create(output); // Our crunch job is a MapReduce job Configuration conf = getConf(); conf.setBoolean(MRJobConfig.MAP_SPECULATIVE, Boolean.FALSE); conf.setBoolean(MRJobConfig.REDUCE_SPECULATIVE, Boolean.FALSE); Pipeline pipeline = new MRPipeline(Hdfs2Cass.class, conf); // Parse & fetch info about target Cassandra cluster CassandraParams params = CassandraParams.parse(outputUri); PCollection<GenericRecord> records = ((PCollection<GenericRecord>)(PCollection) pipeline.read(From.avroFile(inputList(input)))); String protocol = outputUri.getScheme(); if (protocol.equalsIgnoreCase("thrift")) { records // First convert ByteBuffers to ThriftRecords .parallelDo(new AvroToThrift(rowkey, timestamp, ttl, ignore), ThriftRecord.PTYPE) // Then group the ThriftRecords in preparation for writing them .parallelDo(new ThriftRecord.AsPair(), ThriftRecord.AsPair.PTYPE) .groupByKey(params.createGroupingOptions()) // Finally write the ThriftRecords to Cassandra .write(new ThriftTarget(outputUri, params)); } else if (protocol.equalsIgnoreCase("cql")) { records // In case of CQL, convert ByteBuffers to CQLRecords .parallelDo(new AvroToCQL(rowkey, timestamp, ttl, ignore), CQLRecord.PTYPE) .by(params.getKeyFn(), Avros.bytes()) .groupByKey(params.createGroupingOptions()) .write(new CQLTarget(outputUri, params)); } // Execute the pipeline PipelineResult result = pipeline.done(); return result.succeeded() ? 0 : 1; }
Example #8
Source File: CrunchDatasets.java From kite with Apache License 2.0 | 4 votes |
/** * Partitions {@code collection} to be stored efficiently in {@code View}. * <p> * This restructures the parallel collection so that all of the entities that * will be stored in a given partition will be evenly distributed across a specified * {@code numPartitionWriters}. * <p> * If the dataset is not partitioned, then this will structure all of the * entities to produce a number of files equal to {@code numWriters}. * * @param collection a collection of entities * @param view a {@link View} of a dataset to partition the collection for * @param numWriters the number of writers that should be used * @param numPartitionWriters the number of writers data for a single partition will be distributed across * @param <E> the type of entities in the collection and underlying dataset * @return an equivalent collection of entities partitioned for the view * @see #partition(PCollection, View) * * @since 1.1.0 */ public static <E> PCollection<E> partition(PCollection<E> collection, View<E> view, int numWriters, int numPartitionWriters) { //ensure the number of writers is honored whether it is per partition or total. DatasetDescriptor descriptor = view.getDataset().getDescriptor(); if (descriptor.isPartitioned()) { GetStorageKey<E> getKey = new GetStorageKey<E>(view, numPartitionWriters); PTable<Pair<GenericData.Record, Integer>, E> table = collection .by(getKey, Avros.pairs(Avros.generics(getKey.schema()), Avros.ints())); PGroupedTable<Pair<GenericData.Record, Integer>, E> grouped = numWriters > 0 ? table.groupByKey(numWriters) : table.groupByKey(); return grouped.ungroup().values(); } else { return partition(collection, numWriters); } }
Example #9
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 4 votes |
@Test public void testUseReaderSchema() throws IOException { // Create a schema with only a username, so we can test reading it // with an enhanced record structure. Schema oldRecordSchema = SchemaBuilder.record("org.kitesdk.data.user.OldUserRecord") .fields() .requiredString("username") .endRecord(); // create the dataset Dataset<Record> in = repo.create("ns", "in", new DatasetDescriptor.Builder() .schema(oldRecordSchema).build()); Dataset<Record> out = repo.create("ns", "out", new DatasetDescriptor.Builder() .schema(oldRecordSchema).build()); Record oldUser = new Record(oldRecordSchema); oldUser.put("username", "user"); DatasetWriter<Record> writer = in.newWriter(); try { writer.write(oldUser); } finally { writer.close(); } Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); // read data from updated dataset that has the new schema. // At this point, User class has the old schema PCollection<NewUserRecord> data = pipeline.read(CrunchDatasets.asSource(in.getUri(), NewUserRecord.class)); PCollection<NewUserRecord> processed = data.parallelDo(new UserRecordIdentityFn(), Avros.records(NewUserRecord.class)); pipeline.write(processed, CrunchDatasets.asTarget(out)); DatasetReader reader = out.newReader(); Assert.assertTrue("Pipeline failed.", pipeline.run().succeeded()); try { // there should be one record that is equal to our old user generic record. Assert.assertEquals(oldUser, reader.next()); Assert.assertFalse(reader.hasNext()); } finally { reader.close(); } }
Example #10
Source File: TestCrunchDatasets.java From kite with Apache License 2.0 | 4 votes |
@Test public void testUseReaderSchemaParquet() throws IOException { // Create a schema with only a username, so we can test reading it // with an enhanced record structure. Schema oldRecordSchema = SchemaBuilder.record("org.kitesdk.data.user.OldUserRecord") .fields() .requiredString("username") .endRecord(); // create the dataset Dataset<Record> in = repo.create("ns", "in", new DatasetDescriptor.Builder() .format(Formats.PARQUET).schema(oldRecordSchema).build()); Dataset<Record> out = repo.create("ns", "out", new DatasetDescriptor.Builder() .format(Formats.PARQUET).schema(oldRecordSchema).build()); Record oldUser = new Record(oldRecordSchema); oldUser.put("username", "user"); DatasetWriter<Record> writer = in.newWriter(); try { writer.write(oldUser); } finally { writer.close(); } Pipeline pipeline = new MRPipeline(TestCrunchDatasets.class); // read data from updated dataset that has the new schema. // At this point, User class has the old schema PCollection<NewUserRecord> data = pipeline.read(CrunchDatasets.asSource(in.getUri(), NewUserRecord.class)); PCollection<NewUserRecord> processed = data.parallelDo(new UserRecordIdentityFn(), Avros.records(NewUserRecord.class)); pipeline.write(processed, CrunchDatasets.asTarget(out)); DatasetReader reader = out.newReader(); Assert.assertTrue("Pipeline failed.", pipeline.run().succeeded()); try { // there should be one record that is equal to our old user generic record. Assert.assertEquals(oldUser, reader.next()); Assert.assertFalse(reader.hasNext()); } finally { reader.close(); } }