org.neuroph.core.NeuralNetwork Java Examples
The following examples show how to use
org.neuroph.core.NeuralNetwork.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SwedishAutoInsurance.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); MeanSquaredError mse = new MeanSquaredError(); MeanAbsoluteError mae = new MeanAbsoluteError(); for (DataSetRow testSetRow : dataSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); double[] desiredOutput = testSetRow.getDesiredOutput(); mse.addPatternError(networkOutput, desiredOutput); mae.addPatternError(networkOutput, desiredOutput); } System.out.println("Mean squared error is: " + mse.getTotalError()); System.out.println("Mean absolute error is: " + mae.getTotalError()); }
Example #2
Source File: Ionosphere.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); evaluation.addEvaluator(new ClassifierEvaluator.Binary(0.5)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.Binary.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #3
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); MeanSquaredError mse = new MeanSquaredError(); MeanAbsoluteError mae = new MeanAbsoluteError(); for (DataSetRow testSetRow : dataSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); double[] desiredOutput = testSetRow.getDesiredOutput(); mse.addPatternError(networkOutput, desiredOutput); mae.addPatternError(networkOutput, desiredOutput); } System.out.println("Mean squared error is: " + mse.getTotalError()); System.out.println("Mean absolute error is: " + mae.getTotalError()); }
Example #4
Source File: NetworkUtils.java From developerWorks with Apache License 2.0 | 6 votes |
/** * Returns a NxNxNxN style string showing the layer structure * of the specified network. * * @param network * @return */ public static String getNetworkStructure(NeuralNetwork<BackPropagation> network) { StringBuilder sb = new StringBuilder(); // // First the inputs if (network != null) { sb.append(network.getInputsCount()); // // Now for the hidden layers for (Layer layer : network.getLayers()) { sb.append("x"); sb.append(layer.getNeuronsCount()); } // // Finally, the outputs sb.append("x"); sb.append(network.getOutputsCount()); } return sb.toString(); }
Example #5
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Test public void testUpdateNetworkWeights() { NeuralNetwork<BackPropagation> nn = new NeuralNetwork<>(); nn.setInputNeurons(new ArrayList<Neuron>() { { add(new Neuron()); add(new Neuron()); } }); nn.setOutputNeurons(new ArrayList<Neuron>() { { add(new Neuron()); } }); nn.setLearningRule(instance); BackPropagation bp1 = Mockito.spy(new BackPropagation()); nn.setLearningRule(bp1); double[] weigths = {1, 2}; bp1.calculateWeightChanges(weigths); Mockito.verify(bp1).calculateErrorAndUpdateOutputNeurons(weigths); Mockito.verify(bp1).calculateErrorAndUpdateHiddenNeurons(); }
Example #6
Source File: DigitsRecognition.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Prints network output for the each element from the specified training * set. * * @param neuralNet neural network * @param testSet test data set */ public static void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("--------------------------------------------------------------------"); System.out.println("***********************TESTING NEURAL NETWORK***********************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); int outputIdx = maxOutput(neuralNet.getOutput()); String[] inputDigit = DigitData.convertDataIntoImage(testSetRow.getInput()); for (int i = 0; i < inputDigit.length; i++) { if (i != inputDigit.length - 1) { System.out.println(inputDigit[i]); } else { System.out.println(inputDigit[i] + "----> " + outputIdx); } } System.out.println(""); } }
Example #7
Source File: DiabetesSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("**********************RESULT**********************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); // get network output double[] networkOutput = neuralNet.getOutput(); int predicted = interpretOutput(networkOutput); // get target/desired output double[] desiredOutput = testSetRow.getDesiredOutput(); int target = (int)desiredOutput[0]; // count predictions countPredictions(predicted, target); } System.out.println("Total cases: " + total + ". "); System.out.println("Correctly predicted cases: " + correct); System.out.println("Incorrectly predicted cases: " + incorrect); double percentTotal = (correct / (double)total) * 100; System.out.println("Predicted correctly: " + formatDecimalNumber(percentTotal) + "%. "); }
Example #8
Source File: BackPropagationTest.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Test public void testCalculateErrorAndUpdateOutputNeurons() { NeuralNetwork<BackPropagation> nn = new NeuralNetwork<>(); nn.setInputNeurons(new ArrayList<Neuron>() { { add(new Neuron()); add(new Neuron()); } }); nn.setOutputNeurons(new ArrayList<Neuron>() { { add(new Neuron()); } }); nn.setLearningRule(instance); nn.getOutputNeurons().get(0).setDelta(1); instance.calculateErrorAndUpdateOutputNeurons(new double[]{0}); assertTrue(nn.getOutputNeurons().get(0).getDelta() == 0); instance.calculateErrorAndUpdateOutputNeurons(new double[]{0.5}); assertTrue(nn.getOutputNeurons().get(0).getDelta() == 0.5); }
Example #9
Source File: SunSpots.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void run() { // uncomment the following line to use regular Neuroph (non-flat) processing //Neuroph.getInstance().setFlattenNetworks(false); // create neural network NeuralNetwork network = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, WINDOW_SIZE, 10, 1); // normalize training data normalizeSunspots(0.1, 0.9); network.getLearningRule().addListener(this); // create training set DataSet trainingSet = generateTrainingData(); network.learn(trainingSet); predict(network); Neuroph.getInstance().shutdown(); }
Example #10
Source File: BreastCancerSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("********************** TEST RESULT **********************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); // get network output double[] networkOutput = neuralNet.getOutput(); int predicted = interpretOutput(networkOutput); // get target/desired output double[] desiredOutput = testSetRow.getDesiredOutput(); int target = (int)desiredOutput[0]; // count predictions countPredictions(predicted, target); } System.out.println("Total cases: " + total + ". "); System.out.println("Correctly predicted cases: " + correct); System.out.println("Incorrectly predicted cases: " + incorrect); double percentTotal = (correct / (double)total) * 100; System.out.println("Predicted correctly: " + formatDecimalNumber(percentTotal) + "%. "); }
Example #11
Source File: WheatSeeds.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); String[] classLabels = new String[]{"1", "2", "3"}; evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classLabels)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.MultiClass.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #12
Source File: Banknote.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); evaluation.addEvaluator(new ClassifierEvaluator.Binary(0.5)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.Binary.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #13
Source File: Abalone.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); String classLabels[] = new String[]{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29"}; evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classLabels)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.MultiClass.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #14
Source File: Sonar.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); evaluation.addEvaluator(new ClassifierEvaluator.Binary(0.5)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.Binary.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example #15
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 6 votes |
public void evaluate(NeuralNetwork neuralNet, DataSet dataSet) { System.out.println("Calculating performance indicators for neural network."); MeanSquaredError mse = new MeanSquaredError(); MeanAbsoluteError mae = new MeanAbsoluteError(); for (DataSetRow testSetRow : dataSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); double[] desiredOutput = testSetRow.getDesiredOutput(); mse.addPatternError(networkOutput, desiredOutput); mae.addPatternError(networkOutput, desiredOutput); } System.out.println("Mean squared error is: " + mse.getTotalError()); System.out.println("Mean absolute error is: " + mae.getTotalError()); }
Example #16
Source File: NeurophXOR.java From tutorials with MIT License | 6 votes |
public static NeuralNetwork trainNeuralNetwork(NeuralNetwork ann) { int inputSize = 2; int outputSize = 1; DataSet ds = new DataSet(inputSize, outputSize); DataSetRow rOne = new DataSetRow(new double[] { 0, 1 }, new double[] { 1 }); ds.addRow(rOne); DataSetRow rTwo = new DataSetRow(new double[] { 1, 1 }, new double[] { 0 }); ds.addRow(rTwo); DataSetRow rThree = new DataSetRow(new double[] { 0, 0 }, new double[] { 0 }); ds.addRow(rThree); DataSetRow rFour = new DataSetRow(new double[] { 1, 0 }, new double[] { 1 }); ds.addRow(rFour); BackPropagation backPropagation = new BackPropagation(); backPropagation.setMaxIterations(1000); ann.learn(ds, backPropagation); return ann; }
Example #17
Source File: ImageRecognitionSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
public static void main(String[] args) { // load trained neural network saved with NeurophStudio (specify existing neural network file here) NeuralNetwork nnet = NeuralNetwork.createFromFile("MyImageRecognition.nnet"); // get the image recognition plugin from neural network ImageRecognitionPlugin imageRecognition = (ImageRecognitionPlugin)nnet.getPlugin(ImageRecognitionPlugin.class); try { // image recognition is done here HashMap<String, Double> output = imageRecognition.recognizeImage(new File("someImage.jpg")); // specify some existing image file here System.out.println(output.toString()); } catch(IOException ioe) { System.out.println("Error: could not read file!"); } catch (VectorSizeMismatchException vsme) { System.out.println("Error: Image dimensions dont !"); } }
Example #18
Source File: NeuralNetworkCODEC.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Decode a network from an array. * @param array The array used to decode. * @param network The network to decode into. */ public static void array2network(double[] array, NeuralNetwork network) { int index = 0; List<Layer> layers = network.getLayers(); for (Layer layer : layers) { for (Neuron neuron : layer.getNeurons()) { for (Connection connection : neuron.getOutConnections()) { connection.getWeight().setValue(array[index++]); //connection.getWeight().setPreviousValue(array[index++]); } } } }
Example #19
Source File: GraphmlExport.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Create XML graph from neuroph neural network. * @param ann * @return */ private Graph createGraph( final NeuralNetwork ann ) { String id = ann.getLabel(); if( id == null || id.length() == 0 ) { id = "defaultId"; } Graph graph = new Graph( id ); graph.addNetwork( ann ); return graph; }
Example #20
Source File: BrestCancerSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("**************************************************"); System.out.println("**********************RESULT**********************"); System.out.println("**************************************************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); //Finding network output double[] networkOutput = neuralNet.getOutput(); int predicted = maxOutput(networkOutput); //Finding actual output double[] networkDesiredOutput = testSetRow.getDesiredOutput(); int ideal = maxOutput(networkDesiredOutput); //Colecting data for network evaluation keepScore(predicted, ideal); } System.out.println("Total cases: " + this.count[2] + ". "); System.out.println("Correctly predicted cases: " + this.correct[2] + ". "); System.out.println("Incorrectly predicted cases: " + (this.count[2] - this.correct[2] - unpredicted) + ". "); System.out.println("Unrecognized cases: " + unpredicted + ". "); double percentTotal = (double) this.correct[2] * 100 / (double) this.count[2]; System.out.println("Predicted correctly: " + formatDecimalNumber(percentTotal) + "%. "); double percentM = (double) this.correct[0] * 100.0 / (double) this.count[0]; System.out.println("Prediction for 'M (malignant)' => (Correct/total): " + this.correct[0] + "/" + count[0] + "(" + formatDecimalNumber(percentM) + "%). "); double percentB = (double) this.correct[1] * 100.0 / (double) this.count[1]; System.out.println("Prediction for 'B (benign)' => (Correct/total): " + this.correct[1] + "/" + count[1] + "(" + formatDecimalNumber(percentB) + "%). "); }
Example #21
Source File: PredictingPerformanceOfCPUSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.print("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println(" Output: " + Arrays.toString(networkOutput)); } }
Example #22
Source File: NetworkUtils.java From developerWorks with Apache License 2.0 | 5 votes |
/** * Runs the specified network using the Neuroph API. * * @param network * @param input * @return */ public static <T extends NeuralNetwork<BackPropagation>> double[] runNetwork(T network, double[] input) { double[] ret; network.setInput(input); network.calculate(); // Return value is the network's output ret = network.getOutput(); if (log.isTraceEnabled()) { log.trace("Input : " + Arrays.toString(input)); log.trace("Output: " + Arrays.toString(ret)); } return ret; }
Example #23
Source File: SwedishAutoInsurance.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("Showing inputs, desired output and neural network output for every row in test set."); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.println("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println("Output: " + networkOutput[0]); System.out.println("Desired output" + Arrays.toString(networkOutput)); } }
Example #24
Source File: BatchImageTrainer.java From FakeImageDetection with GNU General Public License v3.0 | 5 votes |
@Override public void doRun() { try { System.out.println("Starting training thread....." + sampleDimension.toString() + " and " + imageLabels.toString()); HashMap<String, BufferedImage> imagesMap = new HashMap<String, BufferedImage>(); for (File file : srcDirectory.listFiles()) { imageLabels.add(FilenameUtils.removeExtension(file.getName())); if (sampleDimension.getWidth() > 0 && sampleDimension.getHeight() > 0) { Double w = sampleDimension.getWidth(); Double h = sampleDimension.getHeight(); imagesMap.put(file.getName(), ImageUtilities.resizeImage(ImageUtilities.loadImage(file), w.intValue(), h.intValue())); } } Map<String, FractionRgbData> imageRgbData = ImageUtilities.getFractionRgbDataForImages(imagesMap); DataSet learningData = ImageRecognitionHelper.createRGBTrainingSet(imageLabels, imageRgbData); nnet = NeuralNetwork.load(new FileInputStream(nnFile)); //Load NNetwork MomentumBackpropagation mBackpropagation = (MomentumBackpropagation) nnet.getLearningRule(); mBackpropagation.setLearningRate(learningRate); mBackpropagation.setMaxError(maxError); mBackpropagation.setMomentum(momentum); System.out.println("Network Information\nLabel = " + nnet.getLabel() + "\n Input Neurons = " + nnet.getInputsCount() + "\n Number of layers = " + nnet.getLayersCount() ); mBackpropagation.addListener(this); System.out.println("Starting training......"); nnet.learn(learningData, mBackpropagation); //Training Completed listener.batchImageTrainingCompleted(); } catch (FileNotFoundException ex) { System.out.println(ex.getMessage() + "\n" + ex.getLocalizedMessage()); } }
Example #25
Source File: Evaluate.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void evaluate() { System.out.println("Evaluating neural network..."); //Loading neural network from file MultiLayerPerceptron neuralNet = (MultiLayerPerceptron) NeuralNetwork.createFromFile(config.getTrainedNetworkFileName()); //Load normalized balanced data set from file DataSet dataSet = DataSet.load(config.getTestFileName()); //Testing neural network testNeuralNetwork(neuralNet, dataSet); }
Example #26
Source File: ConceptLearningAndClassificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.print("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println(" Output: " + Arrays.toString(networkOutput)); } }
Example #27
Source File: GraphmlExport.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Labels neurons which are yet unlabelled. * * @param ann */ private void labelUnmarkedNeurons( final NeuralNetwork ann ) { for( int layer = 0; layer < ann.getLayersCount(); layer++ ) { int neuronCount = 0; for( Neuron neuron : ann.getLayerAt( layer ).getNeurons() ) { labelNeuron(layer, neuronCount, neuron); neuronCount++; } } }
Example #28
Source File: IOHelper.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Feeds specified neural network with data from InputAdapter and writes * output using OutputAdapter * @param neuralNet neural network * @param in input data source * @param out output data target */ public static void process(NeuralNetwork neuralNet, InputAdapter in, OutputAdapter out) { double[] input; while( (input = in.readInput()) != null) { neuralNet.setInput(input); neuralNet.calculate(); double[] output = neuralNet.getOutput(); out.writeOutput(output); } in.close(); out.close(); }
Example #29
Source File: GermanCreditDataSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { System.out.println("**************************************************"); System.out.println("**********************RESULT**********************"); System.out.println("**************************************************"); for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); //Finding network output double[] networkOutput = neuralNet.getOutput(); int predicted = maxOutput(networkOutput); //Finding actual output double[] networkDesiredOutput = testSetRow.getDesiredOutput(); int ideal = maxOutput(networkDesiredOutput); //Colecting data for network evaluation keepScore(predicted, ideal); } System.out.println("Total cases: " + this.count[2] + ". "); System.out.println("Correctly predicted cases: " + this.correct[2] + ". "); System.out.println("Incorrectly predicted cases: " + (this.count[2] - this.correct[2] - unpredicted) + ". "); System.out.println("Unrecognized cases: " + unpredicted + ". "); double percentTotal = (double) this.correct[2] * 100 / (double) this.count[2]; System.out.println("Predicted correctly: " + formatDecimalNumber(percentTotal) + "%. "); double percentM = (double) this.correct[0] * 100.0 / (double) this.count[0]; System.out.println("Prediction for 'Good credit risk' => (Correct/total): " + this.correct[0] + "/" + count[0] + "(" + formatDecimalNumber(percentM) + "%). "); double percentB = (double) this.correct[1] * 100.0 / (double) this.count[1]; System.out.println("Prediction for 'Bad credit risk' => (Correct/total): " + this.correct[1] + "/" + count[1] + "(" + formatDecimalNumber(percentB) + "%). "); }
Example #30
Source File: ForestFiresSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void testNeuralNetwork(NeuralNetwork neuralNet, DataSet testSet) { for (DataSetRow testSetRow : testSet.getRows()) { neuralNet.setInput(testSetRow.getInput()); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.print("Input: " + Arrays.toString(testSetRow.getInput())); System.out.println(" Output: " + Arrays.toString(networkOutput)); } }