org.ejml.factory.DecompositionFactory Java Examples
The following examples show how to use
org.ejml.factory.DecompositionFactory.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: ArimaModel.java From java-timeseries with MIT License | 5 votes |
private static Complex64F[] findRoots(double... coefficients) { int N = coefficients.length - 1; // Construct the companion matrix. This is a square N x N matrix. final DenseMatrix64F c = new DenseMatrix64F(N, N); double a = coefficients[N]; for (int i = 0; i < N; i++) { c.set(i, N - 1, -coefficients[i] / a); } for (int i = 1; i < N; i++) { c.set(i, i - 1, 1); } // Use generalized eigenvalue decomposition to find the roots. EigenDecomposition<DenseMatrix64F> evd = DecompositionFactory.eig(N, false); evd.decompose(c); final Complex64F[] roots = new Complex64F[N]; for (int i = 0; i < N; i++) { roots[i] = evd.getEigenvalue(i); } return roots; }
Example #2
Source File: EllipticalSliceOperator.java From beast-mcmc with GNU Lesser General Public License v2.1 | 5 votes |
private static void rotateNd(double[] x, int dim) { // Get first `dim` locations DenseMatrix64F matrix = new DenseMatrix64F(dim, dim); for (int row = 0; row < dim; ++row) { for (int col = 0; col < dim; ++col) { matrix.set(row, col, x[col * dim + row]); } } // Do a QR decomposition QRDecomposition<DenseMatrix64F> qr = DecompositionFactory.qr(dim, dim); qr.decompose(matrix); DenseMatrix64F qm = qr.getQ(null, true); DenseMatrix64F rm = qr.getR(null, true); // Reflection invariance if (rm.get(0,0) < 0) { CommonOps.scale(-1, rm); CommonOps.scale(-1, qm); } // Compute Q^{-1} DenseMatrix64F qInv = new DenseMatrix64F(dim, dim); CommonOps.transpose(qm, qInv); // Apply to each location for (int location = 0; location < x.length / dim; ++location) { WrappedVector locationVector = new WrappedVector.Raw(x, location * dim, dim); MissingOps.matrixVectorMultiple(qInv, locationVector, locationVector, dim); } }
Example #3
Source File: MultivariateElasticModel.java From beast-mcmc with GNU Lesser General Public License v2.1 | 5 votes |
@Override public EigenDecomposition decomposeStrenghtOfSelection(MatrixParameterInterface AParam, int dim, boolean isSymmetric) { DenseMatrix64F A = MissingOps.wrap(AParam); org.ejml.interfaces.decomposition.EigenDecomposition eigA = DecompositionFactory.eig(dim, true, isSymmetric); if (!eigA.decompose(A)) throw new RuntimeException("Eigen decomposition failed."); return new EigenDecomposition(eigenVectorsMatrix(eigA), null, eigenValuesMatrix(eigA, dim)); }
Example #4
Source File: ProcessSimulationDelegate.java From beast-mcmc with GNU Lesser General Public License v2.1 | 5 votes |
static DenseMatrix64F getCholeskyOfVariance(DenseMatrix64F variance, final int dim) { org.ejml.interfaces.decomposition.CholeskyDecomposition<DenseMatrix64F> engine = DecompositionFactory.chol(dim, true); engine.decompose(variance); return engine.getT(null); }
Example #5
Source File: CompoundEigenMatrixTest.java From beast-mcmc with GNU Lesser General Public License v2.1 | 5 votes |
private EigenDecomposition decomposeStrenghtOfSelection(double[] Aparam) { int n = getDimTrait(); DenseMatrix64F A = MissingOps.wrap(Aparam, 0, n, n); // Decomposition EigenDecomposition eigA = DecompositionFactory.eig(n, true, false); if (!eigA.decompose(A)) throw new RuntimeException("Eigen decomposition failed."); return eigA; }
Example #6
Source File: SafeMultivariateActualizedWithDriftIntegratorTest.java From beast-mcmc with GNU Lesser General Public License v2.1 | 5 votes |
private EigenDecomposition decomposeStrenghtOfSelection(double[] Aparam) { int n = getDimTrait(); DenseMatrix64F A = MissingOps.wrap(Aparam, 0, n, n); // Decomposition EigenDecomposition eigA = DecompositionFactory.eig(n, true, false); if (!eigA.decompose(A)) throw new RuntimeException("Eigen decomposition failed."); return eigA; }
Example #7
Source File: MissingOps.java From beast-mcmc with GNU Lesser General Public License v2.1 | 4 votes |
public static InversionResult safeDeterminant(DenseMatrix64F source, boolean invert) { final int finiteCount = countFiniteNonZeroDiagonals(source); InversionResult result; if (finiteCount == 0) { result = new InversionResult(NOT_OBSERVED, 0, Double.NEGATIVE_INFINITY, true); } else { // LinearSolver<DenseMatrix64F> solver = LinearSolverFactory.pseudoInverse(true); // solver.setA(source); // // SingularValueDecomposition<DenseMatrix64F> svd = solver.getDecomposition(); // double[] values = svd.getSingularValues(); // // if (values == null) { // throw new RuntimeException("Unable to perform SVD"); // } SingularValueDecomposition<DenseMatrix64F> svd = DecompositionFactory.svd(source.getNumRows(), source.getNumCols(), false, false, false); if (!svd.decompose(source)) { if (SingularOps.rank(svd) == 0) return new InversionResult(NOT_OBSERVED, 0, Double.NEGATIVE_INFINITY, true); throw new RuntimeException("SVD decomposition failed"); } double[] values = svd.getSingularValues(); double tol = SingularOps.singularThreshold(svd); // double tol = 0.0; int dim = 0; double logDet = 0; for (int i = 0; i < values.length; i++) { final double lambda = values[i]; if (lambda > tol) { logDet += Math.log(lambda); ++dim; } } if (invert) { logDet = -logDet; } result = new InversionResult(dim == source.getNumCols() ? FULLY_OBSERVED : PARTIALLY_OBSERVED, dim, logDet, true); } return result; }
Example #8
Source File: PCA.java From multimedia-indexing with Apache License 2.0 | 4 votes |
/** * Computes a basis (the principle components) from the most dominant eigenvectors. */ public void computeBasis() { if (sampleIndex != numSamples) throw new IllegalArgumentException("Not all the data has been added"); if (numComponents > numSamples) throw new IllegalArgumentException( "More data needed to compute the desired number of components"); means = new DenseMatrix64F(sampleSize, 1); // compute the mean of all the samples for (int i = 0; i < numSamples; i++) { for (int j = 0; j < sampleSize; j++) { double val = means.get(j); means.set(j, val + A.get(i, j)); } } for (int j = 0; j < sampleSize; j++) { double avg = means.get(j) / numSamples; means.set(j, avg); } // subtract the mean from the original data for (int i = 0; i < numSamples; i++) { for (int j = 0; j < sampleSize; j++) { A.set(i, j, A.get(i, j) - means.get(j)); } } // compute SVD and save time by not computing U SingularValueDecomposition<DenseMatrix64F> svd = DecompositionFactory.svd(numSamples, sampleSize, false, true, compact); if (!svd.decompose(A)) throw new RuntimeException("SVD failed"); V_t = svd.getV(null, true); W = svd.getW(null); // singular values are in an arbitrary order initially and need to be sorted in descending order SingularOps.descendingOrder(null, false, W, V_t, true); // strip off unneeded components and find the basis V_t.reshape(numComponents, sampleSize, true); }