weka.classifiers.functions.LinearRegression Java Examples
The following examples show how to use
weka.classifiers.functions.LinearRegression.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: MultiLinearRegression.java From tsml with GNU General Public License v3.0 | 6 votes |
@Override public void buildClassifier(Instances data) throws Exception { //creating the 2class version of the insts numericClassInsts = new Instances(data); numericClassInsts.setClassIndex(0); //temporary numericClassInsts.deleteAttributeAt(numericClassInsts.numAttributes()-1); Attribute newClassAtt = new Attribute("newClassVal"); //numeric class numericClassInsts.insertAttributeAt(newClassAtt, numericClassInsts.numAttributes()); numericClassInsts.setClassIndex(numericClassInsts.numAttributes()-1); //temporary //and building the regressors regressors = new LinearRegression[data.numClasses()]; double[] trueClassVals = data.attributeToDoubleArray(data.classIndex()); for (int c = 0; c < data.numClasses(); c++) { for (int i = 0; i < numericClassInsts.numInstances(); i++) { //if this inst is of the class we're currently handling (c), set new class val to 1 else 0 double cval = trueClassVals[i] == c ? 1 : 0; numericClassInsts.instance(i).setClassValue(cval); } regressors[c] = new LinearRegression(); regressors[c].buildClassifier(numericClassInsts); } }
Example #2
Source File: StackingC.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * The constructor. */ public StackingC() { m_MetaClassifier = new weka.classifiers.functions.LinearRegression(); ((LinearRegression)(getMetaClassifier())). setAttributeSelectionMethod(new weka.core.SelectedTag(1, LinearRegression.TAGS_SELECTION)); }
Example #3
Source File: StackingC.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * Process options setting meta classifier. * * @param options the meta options to parse * @throws Exception if parsing fails */ protected void processMetaOptions(String[] options) throws Exception { String classifierString = Utils.getOption('M', options); String [] classifierSpec = Utils.splitOptions(classifierString); if (classifierSpec.length != 0) { String classifierName = classifierSpec[0]; classifierSpec[0] = ""; setMetaClassifier(AbstractClassifier.forName(classifierName, classifierSpec)); } else { ((LinearRegression)(getMetaClassifier())). setAttributeSelectionMethod(new weka.core.SelectedTag(1,LinearRegression.TAGS_SELECTION)); } }
Example #4
Source File: RuleNode.java From tsml with GNU General Public License v3.0 | 5 votes |
/** * Build a linear model for this node using those attributes * specified in indices. * * @param indices an array of attribute indices to include in the linear * model * @throws Exception if something goes wrong */ private void buildLinearModel(int [] indices) throws Exception { // copy the training instances and remove all but the tested // attributes Instances reducedInst = new Instances(m_instances); Remove attributeFilter = new Remove(); attributeFilter.setInvertSelection(true); attributeFilter.setAttributeIndicesArray(indices); attributeFilter.setInputFormat(reducedInst); reducedInst = Filter.useFilter(reducedInst, attributeFilter); // build a linear regression for the training data using the // tested attributes LinearRegression temp = new LinearRegression(); temp.buildClassifier(reducedInst); double [] lmCoeffs = temp.coefficients(); double [] coeffs = new double [m_instances.numAttributes()]; for (int i = 0; i < lmCoeffs.length - 1; i++) { if (indices[i] != m_classIndex) { coeffs[indices[i]] = lmCoeffs[i]; } } m_nodeModel = new PreConstructedLinearModel(coeffs, lmCoeffs[lmCoeffs.length - 1]); m_nodeModel.buildClassifier(m_instances); }
Example #5
Source File: WekaLinearRegressionTest.java From Java-Data-Science-Cookbook with MIT License | 5 votes |
public void buildRegression(){ lReg = new LinearRegression(); try { lReg.buildClassifier(cpu); } catch (Exception e) { } System.out.println(lReg); }
Example #6
Source File: Maniac.java From meka with GNU General Public License v3.0 | 5 votes |
/** * Change default classifier to CR with Linear Regression as base as this classifier * uses numeric values in the compressed labels. */ protected Classifier getDefaultClassifier() { CR cr = new CR(); LinearRegression lr = new LinearRegression(); cr.setClassifier(lr); return cr; }
Example #7
Source File: PLST.java From meka with GNU General Public License v3.0 | 5 votes |
/** * Change default classifier to CR with Linear Regression as base as this classifier * uses numeric values in the compressed labels. */ protected Classifier getDefaultClassifier() { CR cr = new CR(); LinearRegression lr = new LinearRegression(); cr.setClassifier(lr); return cr; }
Example #8
Source File: COMT2.java From bestconf with Apache License 2.0 | 4 votes |
@Override public Capabilities getCapabilities() { return new LinearRegression().getCapabilities(); }
Example #9
Source File: RegressionTask.java From Machine-Learning-in-Java with MIT License | 4 votes |
public static void main(String[] args) throws Exception { /* * Load data */ CSVLoader loader = new CSVLoader(); loader.setFieldSeparator(","); loader.setSource(new File("data/ENB2012_data.csv")); Instances data = loader.getDataSet(); // System.out.println(data); /* * Build regression models */ // set class index to Y1 (heating load) data.setClassIndex(data.numAttributes() - 2); // remove last attribute Y2 Remove remove = new Remove(); remove.setOptions(new String[] { "-R", data.numAttributes() + "" }); remove.setInputFormat(data); data = Filter.useFilter(data, remove); // build a regression model LinearRegression model = new LinearRegression(); model.buildClassifier(data); System.out.println(model); // 10-fold cross-validation Evaluation eval = new Evaluation(data); eval.crossValidateModel(model, data, 10, new Random(1), new String[] {}); System.out.println(eval.toSummaryString()); double coef[] = model.coefficients(); System.out.println(); // build a regression tree model M5P md5 = new M5P(); md5.setOptions(new String[] { "" }); md5.buildClassifier(data); System.out.println(md5); // 10-fold cross-validation eval.crossValidateModel(md5, data, 10, new Random(1), new String[] {}); System.out.println(eval.toSummaryString()); System.out.println(); /* * Bonus: Build additional models */ // ZeroR modelZero = new ZeroR(); // // // // // // REPTree modelTree = new REPTree(); // modelTree.buildClassifier(data); // System.out.println(modelTree); // eval = new Evaluation(data); // eval.crossValidateModel(modelTree, data, 10, new Random(1), new // String[]{}); // System.out.println(eval.toSummaryString()); // // SMOreg modelSVM = new SMOreg(); // // MultilayerPerceptron modelPerc = new MultilayerPerceptron(); // // GaussianProcesses modelGP = new GaussianProcesses(); // modelGP.buildClassifier(data); // System.out.println(modelGP); // eval = new Evaluation(data); // eval.crossValidateModel(modelGP, data, 10, new Random(1), new // String[]{}); // System.out.println(eval.toSummaryString()); /* * Bonus: Save ARFF */ // ArffSaver saver = new ArffSaver(); // saver.setInstances(data); // saver.setFile(new File(args[1])); // saver.setDestination(new File(args[1])); // saver.writeBatch(); }
Example #10
Source File: M5Base.java From tsml with GNU General Public License v3.0 | 2 votes |
/** * Returns default capabilities of the classifier, i.e., of LinearRegression. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { return new LinearRegression().getCapabilities(); }