org.apache.commons.math3.distribution.MultivariateNormalDistribution Java Examples
The following examples show how to use
org.apache.commons.math3.distribution.MultivariateNormalDistribution.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: RandomDistributionTests.java From super-cloudops with Apache License 2.0 | 7 votes |
public static void multivariateNormalDistributionTest3() { System.out.println("=========multivariateNormalDistributionTest3==========="); final double[] mu = { 0, 0 }; final double[][] sigma = { { 2, -1.1 }, { -1.1, 2 } }; final MultivariateNormalDistribution mnd = new MultivariateNormalDistribution(mu, sigma); System.out.println(mnd.getCovariances().getEntry(1, 0)); System.out.println(mnd.density(new double[] { 1d, 1d })); System.out.println(mnd.density(new double[] { 1d, 2d })); System.out.println(mnd.density(new double[] { 1d, 3d })); System.out.println(mnd.density(new double[] { 2d, 2d })); System.out.println(mnd.density(new double[] { 2d, 3d })); System.out.println(mnd.density(new double[] { -2d, 3d })); System.out.println(mnd.density(new double[] { -2d, -1d })); System.out.println(mnd.density(new double[] { 1d, 2d })); System.out.println(mnd.density(new double[] { 250d, 150d })); }
Example #2
Source File: MultiVariateNormalDistributionEvaluator.java From lucene-solr with Apache License 2.0 | 6 votes |
@Override public Object doWork(Object first, Object second) throws IOException{ if(null == first){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the first value",toExpression(constructingFactory))); } if(null == second){ throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the second value",toExpression(constructingFactory))); } @SuppressWarnings({"unchecked"}) List<Number> means = (List<Number>)first; Matrix covar = (Matrix)second; double[] m = new double[means.size()]; for(int i=0; i< m.length; i++) { m[i] = means.get(i).doubleValue(); } return new MultivariateNormalDistribution(m, covar.getData()); }
Example #3
Source File: RandomProjection.java From macrobase with Apache License 2.0 | 6 votes |
@Override public void consume(List<Datum> records) throws Exception { if (!hasConsumed) { n = records.get(0).metrics().getDimension(); mean = new ArrayRealVector(n); covV = new ArrayRealVector(n, 1d/n); covM = new DiagonalMatrix(covV.toArray()); mnd = new MultivariateNormalDistribution(mean.toArray(), covM.getData()); mnd.reseedRandomGenerator(randomSeed); randomProjectionMatrix = new BlockRealMatrix(mnd.sample(k)); hasConsumed = true; } for (Datum d: records){ metricVector = d.metrics(); transformedVector = randomProjectionMatrix.operate(metricVector); output.add(new Datum(d,transformedVector)); } }
Example #4
Source File: GaussianTest.java From macrobase with Apache License 2.0 | 6 votes |
@Test public void testFitGaussian() { MultivariateNormalDistribution mvNormal = getSample3dNormal(); int N = 1000000; int k = 3; List<double[]> testData = new ArrayList<>(N); for (int i = 0; i < N; i++) { testData.add(mvNormal.sample()); } long startTime = System.currentTimeMillis(); Gaussian fitted = new Gaussian().fit(testData); long endTime = System.currentTimeMillis(); log.debug("Fitted {} in: {}", N, endTime - startTime); assertArrayEquals(mvNormal.getMeans(), fitted.getMean(), 0.01); for (int i = 0; i < k; i++) { assertArrayEquals( mvNormal.getCovariances().getRow(i), fitted.getCovariance().getRow(i), 0.05); } }
Example #5
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Ignore@Test public void testInitialMixture() { // Testing initial mixture estimated from data double[] correctWeights = new double[] { 0.5, 0.5 }; MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(new double[] { -0.0021722935000328823, 3.5432892936887908 }, new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); correctMVNs[1] = new MultivariateNormalDistribution(new double[] { 5.090902706507635, 8.68540656355283 }, new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); final MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(getTestSamples(), 2); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : initialMix .getComponents()) { Assert.assertEquals(correctWeights[i], component.getFirst(), Math.ulp(1d)); Assert.assertEquals(correctMVNs[i], component.getSecond()); i++; } }
Example #6
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected = DimensionMismatchException.class) public void testIncompatibleIntialMixture() { // Data has 3 columns double[][] data = new double[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; double[] weights = new double[] { 0.5, 0.5 }; // These distributions are compatible with 2-column data, not 3-column // data MultivariateNormalDistribution[] mvns = new MultivariateNormalDistribution[2]; mvns[0] = new MultivariateNormalDistribution(new double[] { -0.0021722935000328823, 3.5432892936887908 }, new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); mvns[1] = new MultivariateNormalDistribution(new double[] { 5.090902706507635, 8.68540656355283 }, new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); // Create components and mixture List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[0], mvns[0])); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[1], mvns[1])); MixtureMultivariateNormalDistribution badInitialMix = new MixtureMultivariateNormalDistribution(components); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); fitter.fit(badInitialMix); }
Example #7
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected = DimensionMismatchException.class) public void testIncompatibleIntialMixture() { // Data has 3 columns double[][] data = new double[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; double[] weights = new double[] { 0.5, 0.5 }; // These distributions are compatible with 2-column data, not 3-column // data MultivariateNormalDistribution[] mvns = new MultivariateNormalDistribution[2]; mvns[0] = new MultivariateNormalDistribution(new double[] { -0.0021722935000328823, 3.5432892936887908 }, new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); mvns[1] = new MultivariateNormalDistribution(new double[] { 5.090902706507635, 8.68540656355283 }, new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); // Create components and mixture List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[0], mvns[0])); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[1], mvns[1])); MixtureMultivariateNormalDistribution badInitialMix = new MixtureMultivariateNormalDistribution(components); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); fitter.fit(badInitialMix); }
Example #8
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected = DimensionMismatchException.class) public void testIncompatibleIntialMixture() { // Data has 3 columns double[][] data = new double[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; double[] weights = new double[] { 0.5, 0.5 }; // These distributions are compatible with 2-column data, not 3-column // data MultivariateNormalDistribution[] mvns = new MultivariateNormalDistribution[2]; mvns[0] = new MultivariateNormalDistribution(new double[] { -0.0021722935000328823, 3.5432892936887908 }, new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); mvns[1] = new MultivariateNormalDistribution(new double[] { 5.090902706507635, 8.68540656355283 }, new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); // Create components and mixture List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[0], mvns[0])); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[1], mvns[1])); MixtureMultivariateNormalDistribution badInitialMix = new MixtureMultivariateNormalDistribution(components); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); fitter.fit(badInitialMix); }
Example #9
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected = DimensionMismatchException.class) public void testIncompatibleIntialMixture() { // Data has 3 columns double[][] data = new double[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; double[] weights = new double[] { 0.5, 0.5 }; // These distributions are compatible with 2-column data, not 3-column // data MultivariateNormalDistribution[] mvns = new MultivariateNormalDistribution[2]; mvns[0] = new MultivariateNormalDistribution(new double[] { -0.0021722935000328823, 3.5432892936887908 }, new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); mvns[1] = new MultivariateNormalDistribution(new double[] { 5.090902706507635, 8.68540656355283 }, new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); // Create components and mixture List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[0], mvns[0])); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[1], mvns[1])); MixtureMultivariateNormalDistribution badInitialMix = new MixtureMultivariateNormalDistribution(components); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); fitter.fit(badInitialMix); }
Example #10
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test(expected = DimensionMismatchException.class) public void testIncompatibleIntialMixture() { // Data has 3 columns double[][] data = new double[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; double[] weights = new double[] { 0.5, 0.5 }; // These distributions are compatible with 2-column data, not 3-column // data MultivariateNormalDistribution[] mvns = new MultivariateNormalDistribution[2]; mvns[0] = new MultivariateNormalDistribution(new double[] { -0.0021722935000328823, 3.5432892936887908 }, new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); mvns[1] = new MultivariateNormalDistribution(new double[] { 5.090902706507635, 8.68540656355283 }, new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); // Create components and mixture List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[0], mvns[0])); components.add(new Pair<Double, MultivariateNormalDistribution>( weights[1], mvns[1])); MixtureMultivariateNormalDistribution badInitialMix = new MixtureMultivariateNormalDistribution(components); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); fitter.fit(badInitialMix); }
Example #11
Source File: BayesianNormalDensityTest.java From macrobase with Apache License 2.0 | 5 votes |
@Test public void bivariateNormalTest() throws Exception { // Make sure we are close to bivariate normal MacroBaseConf conf = new MacroBaseConf() .set(MacroBaseConf.TRANSFORM_TYPE, "BAYESIAN_NORMAL") .set(MacroBaseConf.DATA_LOADER_TYPE, "CSV_LOADER") .set(MacroBaseConf.CSV_COMPRESSION, CSVIngester.Compression.GZIP) .set(MacroBaseConf.CSV_INPUT_FILE, "src/test/resources/data/2d_standard_normal_100k.csv.gz") .set(MacroBaseConf.METRICS, "XX, YY") .set(MacroBaseConf.ATTRIBUTES, ""); double[] means = {0, 0}; double[][] variance = {{1, 0}, {0, 1}}; MultivariateNormalDistribution bivariateNormal = new MultivariateNormalDistribution(means, variance); List<Datum> data = conf.constructIngester().getStream().drain(); assertEquals(100000, data.size()); BayesianNormalDensity bayesianNormal = new BayesianNormalDensity(conf); bayesianNormal.train(data); assertEquals(0, bayesianNormal.getMean().getEntry(0), 0.01); assertEquals(0, bayesianNormal.getMean().getEntry(1), 0.01); Datum d; int index; Random rand = new Random(); for (int i =0 ; i < 100; i++ ) { index = rand.nextInt(data.size()); d = data.get(index); assertEquals(bivariateNormal.density(d.metrics().toArray()), bayesianNormal.getDensity(d), 1e-3); } }
Example #12
Source File: MultivariateNormal.java From macrobase with Apache License 2.0 | 5 votes |
public MultivariateNormal(RealVector mean, RealMatrix sigma) { double[][] arrayOfMatrix = new double[sigma.getColumnDimension()][sigma.getRowDimension()]; for (int i = 0; i < sigma.getColumnDimension(); i++) { arrayOfMatrix[i] = sigma.getRow(i); } distribution = new MultivariateNormalDistribution(mean.toArray(), arrayOfMatrix); }
Example #13
Source File: GaussianTest.java From macrobase with Apache License 2.0 | 5 votes |
@Test public void testMahalanobis() { MultivariateNormalDistribution mvNormal = getSample3dNormal(); Gaussian gaussian = new Gaussian(mvNormal.getMeans(), mvNormal.getCovariances()); int N = 100000; int k = 3; double[][] testData = new double[N][k]; for (int i = 0; i < N; i++) { testData[i] = mvNormal.sample(); } double[] mScores = new double[N]; long startTime = System.currentTimeMillis(); for (int i = 0; i < N; i++) { mScores[i] = gaussian.mahalanobis(testData[i]); } long endTime = System.currentTimeMillis(); log.debug("Mahalobis distance on {} in {}", N, endTime-startTime); double[] dScores = new double[N]; startTime = System.currentTimeMillis(); for (int i = 0; i < N; i++) { dScores[i] = -Math.log(mvNormal.density(testData[i])); } endTime = System.currentTimeMillis(); log.debug("LogPDF on {} in {}", N, endTime-startTime); // Check that mahalonbis distance has same relative magnitude as -log(pdf) for (int i = 1; i < N; i++) { assertEquals(mScores[i] > mScores[i-1], dScores[i] > dScores[i-1]); } }
Example #14
Source File: GaussianTest.java From macrobase with Apache License 2.0 | 5 votes |
private static MultivariateNormalDistribution getSample3dNormal() { double[] mean = {1,2,3}; double[][] cov = { {3,1,0}, {1,3,1}, {0,1,3} }; MultivariateNormalDistribution mvNormal = new MultivariateNormalDistribution(mean, cov); return mvNormal; }
Example #15
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testInitialMixture() { // Testing initial mixture estimated from data final double[] correctWeights = new double[] { 0.5, 0.5 }; final double[][] correctMeans = new double[][] { {-0.0021722935000328823, 3.5432892936887908}, {5.090902706507635, 8.68540656355283}, }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); correctCovMats[1] = new Array2DRowRealMatrix( new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); final MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(getTestSamples(), 2); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : initialMix .getComponents()) { Assert.assertEquals(correctWeights[i], component.getFirst(), Math.ulp(1d)); final double[] means = component.getValue().getMeans(); Assert.assertTrue(Arrays.equals(correctMeans[i], means)); final RealMatrix covMat = component.getValue().getCovariances(); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #16
Source File: MultivariateNormalMixtureExpectationMaximization.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Helper method to create a multivariate normal mixture model which can be * used to initialize {@link #fit(MixtureMultivariateNormalDistribution)}. * * This method uses the data supplied to the constructor to try to determine * a good mixture model at which to start the fit, but it is not guaranteed * to supply a model which will find the optimal solution or even converge. * * @param data Data to estimate distribution * @param numComponents Number of components for estimated mixture * @return Multivariate normal mixture model estimated from the data * @throws NumberIsTooLargeException if {@code numComponents} is greater * than the number of data rows. * @throws NumberIsTooSmallException if {@code numComponents < 2}. * @throws NotStrictlyPositiveException if data has less than 2 rows * @throws DimensionMismatchException if rows of data have different numbers * of columns */ public static MixtureMultivariateNormalDistribution estimate(final double[][] data, final int numComponents) throws NotStrictlyPositiveException, DimensionMismatchException { if (data.length < 2) { throw new NotStrictlyPositiveException(data.length); } if (numComponents < 2) { throw new NumberIsTooSmallException(numComponents, 2, true); } if (numComponents > data.length) { throw new NumberIsTooLargeException(numComponents, data.length, true); } final int numRows = data.length; final int numCols = data[0].length; // sort the data final DataRow[] sortedData = new DataRow[numRows]; for (int i = 0; i < numRows; i++) { sortedData[i] = new DataRow(data[i]); } Arrays.sort(sortedData); // uniform weight for each bin final double weight = 1d / numComponents; // components of mixture model to be created final List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(numComponents); // create a component based on data in each bin for (int binIndex = 0; binIndex < numComponents; binIndex++) { // minimum index (inclusive) from sorted data for this bin final int minIndex = (binIndex * numRows) / numComponents; // maximum index (exclusive) from sorted data for this bin final int maxIndex = ((binIndex + 1) * numRows) / numComponents; // number of data records that will be in this bin final int numBinRows = maxIndex - minIndex; // data for this bin final double[][] binData = new double[numBinRows][numCols]; // mean of each column for the data in the this bin final double[] columnMeans = new double[numCols]; // populate bin and create component for (int i = minIndex, iBin = 0; i < maxIndex; i++, iBin++) { for (int j = 0; j < numCols; j++) { final double val = sortedData[i].getRow()[j]; columnMeans[j] += val; binData[iBin][j] = val; } } MathArrays.scaleInPlace(1d / numBinRows, columnMeans); // covariance matrix for this bin final double[][] covMat = new Covariance(binData).getCovarianceMatrix().getData(); final MultivariateNormalDistribution mvn = new MultivariateNormalDistribution(columnMeans, covMat); components.add(new Pair<Double, MultivariateNormalDistribution>(weight, mvn)); } return new MixtureMultivariateNormalDistribution(components); }
Example #17
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testFit() { // Test that the loglikelihood, weights, and models are determined and // fitted correctly final double[][] data = getTestSamples(); final double correctLogLikelihood = -4.292431006791994; final double[] correctWeights = new double[] { 0.2962324189652912, 0.7037675810347089 }; final double[][] correctMeans = new double[][]{ {-1.4213112715121132, 1.6924690505757753}, {4.213612224374709, 7.975621325853645} }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 1.739356907285747, -0.5867644251487614 }, { -0.5867644251487614, 1.0232932029324642 } } ); correctCovMats[1] = new Array2DRowRealMatrix(new double[][] { { 4.245384898007161, 2.5797798966382155 }, { 2.5797798966382155, 3.9200272522448367 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(data, 2); fitter.fit(initialMix); MixtureMultivariateNormalDistribution fittedMix = fitter.getFittedModel(); List<Pair<Double, MultivariateNormalDistribution>> components = fittedMix.getComponents(); Assert.assertEquals(correctLogLikelihood, fitter.getLogLikelihood(), Math.ulp(1d)); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : components) { final double weight = component.getFirst(); final MultivariateNormalDistribution mvn = component.getSecond(); final double[] mean = mvn.getMeans(); final RealMatrix covMat = mvn.getCovariances(); Assert.assertEquals(correctWeights[i], weight, Math.ulp(1d)); Assert.assertTrue(Arrays.equals(correctMeans[i], mean)); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #18
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testInitialMixture() { // Testing initial mixture estimated from data final double[] correctWeights = new double[] { 0.5, 0.5 }; final double[][] correctMeans = new double[][] { {-0.0021722935000328823, 3.5432892936887908}, {5.090902706507635, 8.68540656355283}, }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); correctCovMats[1] = new Array2DRowRealMatrix( new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); final MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(getTestSamples(), 2); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : initialMix .getComponents()) { Assert.assertEquals(correctWeights[i], component.getFirst(), Math.ulp(1d)); final double[] means = component.getValue().getMeans(); Assert.assertTrue(Arrays.equals(correctMeans[i], means)); final RealMatrix covMat = component.getValue().getCovariances(); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #19
Source File: MultivariateNormalMixtureExpectationMaximization.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Helper method to create a multivariate normal mixture model which can be * used to initialize {@link #fit(MixtureMultivariateNormalDistribution)}. * * This method uses the data supplied to the constructor to try to determine * a good mixture model at which to start the fit, but it is not guaranteed * to supply a model which will find the optimal solution or even converge. * * @param data Data to estimate distribution * @param numComponents Number of components for estimated mixture * @return Multivariate normal mixture model estimated from the data * @throws NumberIsTooLargeException if {@code numComponents} is greater * than the number of data rows. * @throws NumberIsTooSmallException if {@code numComponents < 2}. * @throws NotStrictlyPositiveException if data has less than 2 rows * @throws DimensionMismatchException if rows of data have different numbers * of columns */ public static MixtureMultivariateNormalDistribution estimate(final double[][] data, final int numComponents) throws NotStrictlyPositiveException, DimensionMismatchException { if (data.length < 2) { throw new NotStrictlyPositiveException(data.length); } if (numComponents < 2) { throw new NumberIsTooSmallException(numComponents, 2, true); } if (numComponents > data.length) { throw new NumberIsTooLargeException(numComponents, data.length, true); } final int numRows = data.length; final int numCols = data[0].length; // sort the data final DataRow[] sortedData = new DataRow[numRows]; for (int i = 0; i < numRows; i++) { sortedData[i] = new DataRow(data[i]); } Arrays.sort(sortedData); // uniform weight for each bin final double weight = 1d / numComponents; // components of mixture model to be created final List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); // create a component based on data in each bin for (int binIndex = 0; binIndex < numComponents; binIndex++) { // minimum index (inclusive) from sorted data for this bin final int minIndex = (binIndex * numRows) / numComponents; // maximum index (exclusive) from sorted data for this bin final int maxIndex = ((binIndex + 1) * numRows) / numComponents; // number of data records that will be in this bin final int numBinRows = maxIndex - minIndex; // data for this bin final double[][] binData = new double[numBinRows][numCols]; // mean of each column for the data in the this bin final double[] columnMeans = new double[numCols]; // populate bin and create component for (int i = minIndex, iBin = 0; i < maxIndex; i++, iBin++) { for (int j = 0; j < numCols; j++) { final double val = sortedData[i].getRow()[j]; columnMeans[j] += val; binData[iBin][j] = val; } } MathArrays.scaleInPlace(1d / numBinRows, columnMeans); // covariance matrix for this bin final double[][] covMat = new Covariance(binData).getCovarianceMatrix().getData(); final MultivariateNormalDistribution mvn = new MultivariateNormalDistribution(columnMeans, covMat); components.add(new Pair<Double, MultivariateNormalDistribution>(weight, mvn)); } return new MixtureMultivariateNormalDistribution(components); }
Example #20
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Ignore@Test public void testFit() { // Test that the loglikelihood, weights, and models are determined and // fitted correctly double[][] data = getTestSamples(); double correctLogLikelihood = -4.292431006791994; double[] correctWeights = new double[] { 0.2962324189652912, 0.7037675810347089 }; MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(new double[] { -1.4213112715121132, 1.6924690505757753 }, new double[][] { { 1.739356907285747, -0.5867644251487614 }, { -0.5867644251487614, 1.0232932029324642 } }); correctMVNs[1] = new MultivariateNormalDistribution(new double[] { 4.213612224374709, 7.975621325853645 }, new double[][] { { 4.245384898007161, 2.5797798966382155 }, { 2.5797798966382155, 3.9200272522448367 } }); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(data, 2); fitter.fit(initialMix); MixtureMultivariateNormalDistribution fittedMix = fitter.getFittedModel(); List<Pair<Double, MultivariateNormalDistribution>> components = fittedMix.getComponents(); Assert.assertEquals(correctLogLikelihood, fitter.getLogLikelihood(), Math.ulp(1d)); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : components) { double weight = component.getFirst(); MultivariateNormalDistribution mvn = component.getSecond(); Assert.assertEquals(correctWeights[i], weight, Math.ulp(1d)); Assert.assertEquals(correctMVNs[i], mvn); i++; } }
Example #21
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testFit() { // Test that the loglikelihood, weights, and models are determined and // fitted correctly final double[][] data = getTestSamples(); final double correctLogLikelihood = -4.292431006791994; final double[] correctWeights = new double[] { 0.2962324189652912, 0.7037675810347089 }; final double[][] correctMeans = new double[][]{ {-1.4213112715121132, 1.6924690505757753}, {4.213612224374709, 7.975621325853645} }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 1.739356907285747, -0.5867644251487614 }, { -0.5867644251487614, 1.0232932029324642 } } ); correctCovMats[1] = new Array2DRowRealMatrix(new double[][] { { 4.245384898007161, 2.5797798966382155 }, { 2.5797798966382155, 3.9200272522448367 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(data, 2); fitter.fit(initialMix); MixtureMultivariateNormalDistribution fittedMix = fitter.getFittedModel(); List<Pair<Double, MultivariateNormalDistribution>> components = fittedMix.getComponents(); Assert.assertEquals(correctLogLikelihood, fitter.getLogLikelihood(), Math.ulp(1d)); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : components) { final double weight = component.getFirst(); final MultivariateNormalDistribution mvn = component.getSecond(); final double[] mean = mvn.getMeans(); final RealMatrix covMat = mvn.getCovariances(); Assert.assertEquals(correctWeights[i], weight, Math.ulp(1d)); Assert.assertTrue(Arrays.equals(correctMeans[i], mean)); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #22
Source File: MultiLabelSynthesizer.java From pyramid with Apache License 2.0 | 4 votes |
/** * 2 labels, 3 features, multi-variate gaussian noise * y0: w=(0,1,0) * y1: w=(1,0,0) * y2: w=(0,0,1) * @return */ public static MultiLabelClfDataSet gaussianNoise(int numData){ int numClass = 3; int numFeature = 3; MultiLabelClfDataSet dataSet = MLClfDataSetBuilder.getBuilder().numFeatures(numFeature) .numClasses(numClass) .numDataPoints(numData) .build(); // generate weights Vector[] weights = new Vector[numClass]; for (int k=0;k<numClass;k++){ Vector vector = new DenseVector(numFeature); weights[k] = vector; } weights[0].set(1,1); weights[1].set(0, 1); weights[2].set(2, 1); // generate features for (int i=0;i<numData;i++){ for (int j=0;j<numFeature;j++){ dataSet.setFeatureValue(i,j,Sampling.doubleUniform(-1, 1)); } } double[] means = new double[numClass]; double[][] covars = new double[numClass][numClass]; covars[0][0]=0.5; covars[0][1]=0.02; covars[1][0]=0.02; covars[0][2]=-0.03; covars[2][0]=-0.03; covars[1][1]=0.2; covars[1][2]=-0.03; covars[2][1]=-0.03; covars[2][2]=0.3; MultivariateNormalDistribution distribution = new MultivariateNormalDistribution(means,covars); // assign labels int numFlipped = 0; for (int i=0;i<numData;i++){ double[] noises = distribution.sample(); for (int k=0;k<numClass;k++){ double dot = weights[k].dot(dataSet.getRow(i)); double score = dot + noises[k]; if (score>=0){ dataSet.addLabel(i,k); } if (dot*score<0){ numFlipped += 1; } } } System.out.println("number of flipped bits = "+numFlipped); return dataSet; }
Example #23
Source File: MultivariateNormalMixtureExpectationMaximization.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Helper method to create a multivariate normal mixture model which can be * used to initialize {@link #fit(MixtureMultivariateRealDistribution)}. * * This method uses the data supplied to the constructor to try to determine * a good mixture model at which to start the fit, but it is not guaranteed * to supply a model which will find the optimal solution or even converge. * * @param data Data to estimate distribution * @param numComponents Number of components for estimated mixture * @return Multivariate normal mixture model estimated from the data * @throws NumberIsTooLargeException if {@code numComponents\ is greater * than the number of data rows. * @throws NumberIsTooSmallException if {@code numComponents < 2}. * @throws NotStrictlyPositiveException if data has less than 2 rows * @throws DimensionMismatchException if rows of data have different numbers * of columns * @see #fit */ public static MixtureMultivariateNormalDistribution estimate(final double[][] data, final int numComponents) throws NotStrictlyPositiveException, DimensionMismatchException { if (data.length < 2) { throw new NotStrictlyPositiveException(data.length); } if (numComponents < 2) { throw new NumberIsTooSmallException(numComponents, 2, true); } if (numComponents > data.length) { throw new NumberIsTooLargeException(numComponents, data.length, true); } final int numRows = data.length; final int numCols = data[0].length; // sort the data final DataRow[] sortedData = new DataRow[numRows]; for (int i = 0; i < numRows; i++) { sortedData[i] = new DataRow(data[i]); } Arrays.sort(sortedData); final int totalBins = numComponents; // uniform weight for each bin final double weight = 1d / totalBins; // components of mixture model to be created final List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(); // create a component based on data in each bin for (int binNumber = 1; binNumber <= totalBins; binNumber++) { // minimum index from sorted data for this bin final int minIndex = (int) FastMath.max(0, FastMath.floor((binNumber - 1) * numRows / totalBins)); // maximum index from sorted data for this bin final int maxIndex = (int) FastMath.ceil(binNumber * numRows / numComponents) - 1; // number of data records that will be in this bin final int numBinRows = maxIndex - minIndex + 1; // data for this bin final double[][] binData = new double[numBinRows][numCols]; // mean of each column for the data in the this bin final double[] columnMeans = new double[numCols]; // populate bin and create component for (int i = minIndex, iBin = 0; i <= maxIndex; i++, iBin++) { for (int j = 0; j < numCols; j++) { final double val = sortedData[i].getRow()[j]; columnMeans[j] += val; binData[iBin][j] = val; } } MathArrays.scaleInPlace(1d / numBinRows, columnMeans); // covariance matrix for this bin final double[][] covMat = new Covariance(binData).getCovarianceMatrix().getData(); final MultivariateNormalDistribution mvn = new MultivariateNormalDistribution(columnMeans, covMat); components.add(new Pair<Double, MultivariateNormalDistribution>(weight, mvn)); } return new MixtureMultivariateNormalDistribution(components); }
Example #24
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testFit() { // Test that the loglikelihood, weights, and models are determined and // fitted correctly final double[][] data = getTestSamples(); final double correctLogLikelihood = -4.292431006791994; final double[] correctWeights = new double[] { 0.2962324189652912, 0.7037675810347089 }; final double[][] correctMeans = new double[][]{ {-1.4213112715121132, 1.6924690505757753}, {4.213612224374709, 7.975621325853645} }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 1.739356907285747, -0.5867644251487614 }, { -0.5867644251487614, 1.0232932029324642 } } ); correctCovMats[1] = new Array2DRowRealMatrix(new double[][] { { 4.245384898007161, 2.5797798966382155 }, { 2.5797798966382155, 3.9200272522448367 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(data, 2); fitter.fit(initialMix); MixtureMultivariateNormalDistribution fittedMix = fitter.getFittedModel(); List<Pair<Double, MultivariateNormalDistribution>> components = fittedMix.getComponents(); Assert.assertEquals(correctLogLikelihood, fitter.getLogLikelihood(), Math.ulp(1d)); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : components) { final double weight = component.getFirst(); final MultivariateNormalDistribution mvn = component.getSecond(); final double[] mean = mvn.getMeans(); final RealMatrix covMat = mvn.getCovariances(); Assert.assertEquals(correctWeights[i], weight, Math.ulp(1d)); Assert.assertTrue(Arrays.equals(correctMeans[i], mean)); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #25
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testInitialMixture() { // Testing initial mixture estimated from data final double[] correctWeights = new double[] { 0.5, 0.5 }; final double[][] correctMeans = new double[][] { {-0.0021722935000328823, 3.5432892936887908}, {5.090902706507635, 8.68540656355283}, }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); correctCovMats[1] = new Array2DRowRealMatrix( new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); final MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(getTestSamples(), 2); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : initialMix .getComponents()) { Assert.assertEquals(correctWeights[i], component.getFirst(), Math.ulp(1d)); final double[] means = component.getValue().getMeans(); Assert.assertTrue(Arrays.equals(correctMeans[i], means)); final RealMatrix covMat = component.getValue().getCovariances(); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #26
Source File: MultivariateNormalMixtureExpectationMaximization.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Helper method to create a multivariate normal mixture model which can be * used to initialize {@link #fit(MixtureMultivariateNormalDistribution)}. * * This method uses the data supplied to the constructor to try to determine * a good mixture model at which to start the fit, but it is not guaranteed * to supply a model which will find the optimal solution or even converge. * * @param data Data to estimate distribution * @param numComponents Number of components for estimated mixture * @return Multivariate normal mixture model estimated from the data * @throws NumberIsTooLargeException if {@code numComponents} is greater * than the number of data rows. * @throws NumberIsTooSmallException if {@code numComponents < 2}. * @throws NotStrictlyPositiveException if data has less than 2 rows * @throws DimensionMismatchException if rows of data have different numbers * of columns */ public static MixtureMultivariateNormalDistribution estimate(final double[][] data, final int numComponents) throws NotStrictlyPositiveException, DimensionMismatchException { if (data.length < 2) { throw new NotStrictlyPositiveException(data.length); } if (numComponents < 2) { throw new NumberIsTooSmallException(numComponents, 2, true); } if (numComponents > data.length) { throw new NumberIsTooLargeException(numComponents, data.length, true); } final int numRows = data.length; final int numCols = data[0].length; // sort the data final DataRow[] sortedData = new DataRow[numRows]; for (int i = 0; i < numRows; i++) { sortedData[i] = new DataRow(data[i]); } Arrays.sort(sortedData); // uniform weight for each bin final double weight = 1d / numComponents; // components of mixture model to be created final List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(numComponents); // create a component based on data in each bin for (int binIndex = 0; binIndex < numComponents; binIndex++) { // minimum index (inclusive) from sorted data for this bin final int minIndex = (binIndex * numRows) / numComponents; // maximum index (exclusive) from sorted data for this bin final int maxIndex = ((binIndex + 1) * numRows) / numComponents; // number of data records that will be in this bin final int numBinRows = maxIndex - minIndex; // data for this bin final double[][] binData = new double[numBinRows][numCols]; // mean of each column for the data in the this bin final double[] columnMeans = new double[numCols]; // populate bin and create component for (int i = minIndex, iBin = 0; i < maxIndex; i++, iBin++) { for (int j = 0; j < numCols; j++) { final double val = sortedData[i].getRow()[j]; columnMeans[j] += val; binData[iBin][j] = val; } } MathArrays.scaleInPlace(1d / numBinRows, columnMeans); // covariance matrix for this bin final double[][] covMat = new Covariance(binData).getCovarianceMatrix().getData(); final MultivariateNormalDistribution mvn = new MultivariateNormalDistribution(columnMeans, covMat); components.add(new Pair<Double, MultivariateNormalDistribution>(weight, mvn)); } return new MixtureMultivariateNormalDistribution(components); }
Example #27
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testFit() { // Test that the loglikelihood, weights, and models are determined and // fitted correctly final double[][] data = getTestSamples(); final double correctLogLikelihood = -4.292431006791994; final double[] correctWeights = new double[] { 0.2962324189652912, 0.7037675810347089 }; final double[][] correctMeans = new double[][]{ {-1.4213112715121132, 1.6924690505757753}, {4.213612224374709, 7.975621325853645} }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 1.739356907285747, -0.5867644251487614 }, { -0.5867644251487614, 1.0232932029324642 } } ); correctCovMats[1] = new Array2DRowRealMatrix(new double[][] { { 4.245384898007161, 2.5797798966382155 }, { 2.5797798966382155, 3.9200272522448367 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); MultivariateNormalMixtureExpectationMaximization fitter = new MultivariateNormalMixtureExpectationMaximization(data); MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(data, 2); fitter.fit(initialMix); MixtureMultivariateNormalDistribution fittedMix = fitter.getFittedModel(); List<Pair<Double, MultivariateNormalDistribution>> components = fittedMix.getComponents(); Assert.assertEquals(correctLogLikelihood, fitter.getLogLikelihood(), Math.ulp(1d)); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : components) { final double weight = component.getFirst(); final MultivariateNormalDistribution mvn = component.getSecond(); final double[] mean = mvn.getMeans(); final RealMatrix covMat = mvn.getCovariances(); Assert.assertEquals(correctWeights[i], weight, Math.ulp(1d)); Assert.assertTrue(Arrays.equals(correctMeans[i], mean)); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #28
Source File: MultivariateNormalMixtureExpectationMaximizationTest.java From astor with GNU General Public License v2.0 | 4 votes |
@Test public void testInitialMixture() { // Testing initial mixture estimated from data final double[] correctWeights = new double[] { 0.5, 0.5 }; final double[][] correctMeans = new double[][] { {-0.0021722935000328823, 3.5432892936887908}, {5.090902706507635, 8.68540656355283}, }; final RealMatrix[] correctCovMats = new Array2DRowRealMatrix[2]; correctCovMats[0] = new Array2DRowRealMatrix(new double[][] { { 4.537422569229048, 3.5266152281729304 }, { 3.5266152281729304, 6.175448814169779 } }); correctCovMats[1] = new Array2DRowRealMatrix( new double[][] { { 2.886778573963039, 1.5257474543463154 }, { 1.5257474543463154, 3.3794567673616918 } }); final MultivariateNormalDistribution[] correctMVNs = new MultivariateNormalDistribution[2]; correctMVNs[0] = new MultivariateNormalDistribution(correctMeans[0], correctCovMats[0].getData()); correctMVNs[1] = new MultivariateNormalDistribution(correctMeans[1], correctCovMats[1].getData()); final MixtureMultivariateNormalDistribution initialMix = MultivariateNormalMixtureExpectationMaximization.estimate(getTestSamples(), 2); int i = 0; for (Pair<Double, MultivariateNormalDistribution> component : initialMix .getComponents()) { Assert.assertEquals(correctWeights[i], component.getFirst(), Math.ulp(1d)); final double[] means = component.getValue().getMeans(); Assert.assertTrue(Arrays.equals(correctMeans[i], means)); final RealMatrix covMat = component.getValue().getCovariances(); Assert.assertEquals(correctCovMats[i], covMat); i++; } }
Example #29
Source File: MultivariateNormalMixtureExpectationMaximization.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Helper method to create a multivariate normal mixture model which can be * used to initialize {@link #fit(MixtureMultivariateNormalDistribution)}. * * This method uses the data supplied to the constructor to try to determine * a good mixture model at which to start the fit, but it is not guaranteed * to supply a model which will find the optimal solution or even converge. * * @param data Data to estimate distribution * @param numComponents Number of components for estimated mixture * @return Multivariate normal mixture model estimated from the data * @throws NumberIsTooLargeException if {@code numComponents} is greater * than the number of data rows. * @throws NumberIsTooSmallException if {@code numComponents < 2}. * @throws NotStrictlyPositiveException if data has less than 2 rows * @throws DimensionMismatchException if rows of data have different numbers * of columns */ public static MixtureMultivariateNormalDistribution estimate(final double[][] data, final int numComponents) throws NotStrictlyPositiveException, DimensionMismatchException { if (data.length < 2) { throw new NotStrictlyPositiveException(data.length); } if (numComponents < 2) { throw new NumberIsTooSmallException(numComponents, 2, true); } if (numComponents > data.length) { throw new NumberIsTooLargeException(numComponents, data.length, true); } final int numRows = data.length; final int numCols = data[0].length; // sort the data final DataRow[] sortedData = new DataRow[numRows]; for (int i = 0; i < numRows; i++) { sortedData[i] = new DataRow(data[i]); } Arrays.sort(sortedData); // uniform weight for each bin final double weight = 1d / numComponents; // components of mixture model to be created final List<Pair<Double, MultivariateNormalDistribution>> components = new ArrayList<Pair<Double, MultivariateNormalDistribution>>(numComponents); // create a component based on data in each bin for (int binIndex = 0; binIndex < numComponents; binIndex++) { // minimum index (inclusive) from sorted data for this bin final int minIndex = (binIndex * numRows) / numComponents; // maximum index (exclusive) from sorted data for this bin final int maxIndex = ((binIndex + 1) * numRows) / numComponents; // number of data records that will be in this bin final int numBinRows = maxIndex - minIndex; // data for this bin final double[][] binData = new double[numBinRows][numCols]; // mean of each column for the data in the this bin final double[] columnMeans = new double[numCols]; // populate bin and create component for (int i = minIndex, iBin = 0; i < maxIndex; i++, iBin++) { for (int j = 0; j < numCols; j++) { final double val = sortedData[i].getRow()[j]; columnMeans[j] += val; binData[iBin][j] = val; } } MathArrays.scaleInPlace(1d / numBinRows, columnMeans); // covariance matrix for this bin final double[][] covMat = new Covariance(binData).getCovarianceMatrix().getData(); final MultivariateNormalDistribution mvn = new MultivariateNormalDistribution(columnMeans, covMat); components.add(new Pair<Double, MultivariateNormalDistribution>(weight, mvn)); } return new MixtureMultivariateNormalDistribution(components); }
Example #30
Source File: MultivariateNormal.java From macrobase with Apache License 2.0 | 4 votes |
public MultivariateNormalDistribution getDistribution() { return distribution; }