org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem Java Examples
The following examples show how to use
org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: GaussianCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new least squares problem set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #2
Source File: SimpleCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int count = 0; for (WeightedObservedPoint obs : observations) { target[count] = obs.getY(); weights[count] = obs.getWeight(); ++count; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(function, observations); // Create an optimizer for fitting the curve to the observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(initialGuess). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #3
Source File: HarmonicCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new optimizer set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #4
Source File: PolynomialCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); if (initialGuess == null) { throw new MathInternalError(); } // Return a new least squares problem set up to fit a polynomial curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(initialGuess). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #5
Source File: GaussianCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new least squares problem set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #6
Source File: SimpleCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int count = 0; for (WeightedObservedPoint obs : observations) { target[count] = obs.getY(); weights[count] = obs.getWeight(); ++count; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(function, observations); // Create an optimizer for fitting the curve to the observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(initialGuess). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #7
Source File: HarmonicCurveFitter.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new optimizer set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #8
Source File: NonLinearLeastSquaresSolver.java From trilateration with MIT License | 5 votes |
public Optimum solve(double[] target, double[] weights, double[] initialPoint, boolean debugInfo) { if (debugInfo) { System.out.println("Max Number of Iterations : " + MAXNUMBEROFITERATIONS); } LeastSquaresProblem leastSquaresProblem = LeastSquaresFactory.create( // function to be optimized function, // target values at optimal point in least square equation // (x0+xi)^2 + (y0+yi)^2 + ri^2 = target[i] new ArrayRealVector(target, false), new ArrayRealVector(initialPoint, false), new DiagonalMatrix(weights), null, MAXNUMBEROFITERATIONS, MAXNUMBEROFITERATIONS); return leastSquaresOptimizer.optimize(leastSquaresProblem); }
Example #9
Source File: PolynomialCurveFitter.java From astor with GNU General Public License v2.0 | 4 votes |
/** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); if (initialGuess == null) { throw new MathInternalError(); } // Return a new least squares problem set up to fit a polynomial curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(initialGuess). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Example #10
Source File: AbstractCurveFitter.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a least squares problem corresponding to the appropriate curve. * * @param points Sample points. * @return the least squares problem to use for fitting the curve to the * given {@code points}. */ protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points);
Example #11
Source File: AbstractCurveFitter.java From astor with GNU General Public License v2.0 | 2 votes |
/** * Creates a least squares problem corresponding to the appropriate curve. * * @param points Sample points. * @return the least squares problem to use for fitting the curve to the * given {@code points}. */ protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points);