org.apache.flink.api.common.operators.base.ReduceOperatorBase.CombineHint Java Examples
The following examples show how to use
org.apache.flink.api.common.operators.base.ReduceOperatorBase.CombineHint.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: ReducePerformance.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
private static <T, B extends CopyableIterator<T>> void testReducePerformance (B iterator, TypeInformation<T> typeInfo, CombineHint hint, int numRecords, boolean print) throws Exception { ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().enableObjectReuse(); @SuppressWarnings("unchecked") DataSet<T> output = env.fromParallelCollection(new SplittableRandomIterator<T, B>(numRecords, iterator), typeInfo) .groupBy("0") .reduce(new SumReducer()).setCombineHint(hint); long start = System.currentTimeMillis(); System.out.println(output.count()); long end = System.currentTimeMillis(); if (print) { System.out.println("=== Time for " + iterator.getClass().getSimpleName() + " with hint " + hint.toString() + ": " + (end - start) + "ms ==="); } }
Example #2
Source File: Simplify.java From flink with Apache License 2.0 | 6 votes |
@Override public Graph<K, VV, EV> runInternal(Graph<K, VV, EV> input) throws Exception { // Edges DataSet<Edge<K, EV>> edges = input .getEdges() .flatMap(new SymmetrizeAndRemoveSelfLoops<>(clipAndFlip)) .setParallelism(parallelism) .name("Remove self-loops") .distinct(0, 1) .setCombineHint(CombineHint.NONE) .setParallelism(parallelism) .name("Remove duplicate edges"); // Graph return Graph.fromDataSet(input.getVertices(), edges, input.getContext()); }
Example #3
Source File: Simplify.java From flink with Apache License 2.0 | 6 votes |
@Override public Graph<K, VV, EV> runInternal(Graph<K, VV, EV> input) throws Exception { // Edges DataSet<Edge<K, EV>> edges = input .getEdges() .filter(new RemoveSelfLoops<>()) .setParallelism(parallelism) .name("Remove self-loops") .distinct(0, 1) .setCombineHint(CombineHint.NONE) .setParallelism(parallelism) .name("Remove duplicate edges"); // Graph return Graph.fromDataSet(input.getVertices(), edges, input.getContext()); }
Example #4
Source File: DistinctOperator.java From flink with Apache License 2.0 | 6 votes |
private static <IN, K> org.apache.flink.api.common.operators.SingleInputOperator<?, IN, ?> translateSelectorFunctionDistinct( SelectorFunctionKeys<IN, ?> rawKeys, ReduceFunction<IN> function, TypeInformation<IN> outputType, String name, Operator<IN> input, int parallelism, CombineHint hint) { @SuppressWarnings("unchecked") final SelectorFunctionKeys<IN, K> keys = (SelectorFunctionKeys<IN, K>) rawKeys; TypeInformation<Tuple2<K, IN>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys); Operator<Tuple2<K, IN>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys); PlanUnwrappingReduceOperator<IN, K> reducer = new PlanUnwrappingReduceOperator<>(function, keys, name, outputType, typeInfoWithKey); reducer.setInput(keyedInput); reducer.setCombineHint(hint); reducer.setParallelism(parallelism); return KeyFunctions.appendKeyRemover(reducer, keys); }
Example #5
Source File: ReduceOperator.java From flink with Apache License 2.0 | 6 votes |
private static <T, K> org.apache.flink.api.common.operators.SingleInputOperator<?, T, ?> translateSelectorFunctionReducer( SelectorFunctionKeys<T, ?> rawKeys, ReduceFunction<T> function, TypeInformation<T> inputType, String name, Operator<T> input, int parallelism, CombineHint hint) { @SuppressWarnings("unchecked") final SelectorFunctionKeys<T, K> keys = (SelectorFunctionKeys<T, K>) rawKeys; TypeInformation<Tuple2<K, T>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys); Operator<Tuple2<K, T>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys); PlanUnwrappingReduceOperator<T, K> reducer = new PlanUnwrappingReduceOperator<>(function, keys, name, inputType, typeInfoWithKey); reducer.setInput(keyedInput); reducer.setParallelism(parallelism); reducer.setCombineHint(hint); return KeyFunctions.appendKeyRemover(reducer, keys); }
Example #6
Source File: ReducePerformance.java From flink with Apache License 2.0 | 6 votes |
private static <T, B extends CopyableIterator<T>> void testReducePerformance (B iterator, TypeInformation<T> typeInfo, CombineHint hint, int numRecords, boolean print) throws Exception { ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().enableObjectReuse(); @SuppressWarnings("unchecked") DataSet<T> output = env.fromParallelCollection(new SplittableRandomIterator<T, B>(numRecords, iterator), typeInfo) .groupBy("0") .reduce(new SumReducer()).setCombineHint(hint); long start = System.currentTimeMillis(); System.out.println(output.count()); long end = System.currentTimeMillis(); if (print) { System.out.println("=== Time for " + iterator.getClass().getSimpleName() + " with hint " + hint.toString() + ": " + (end - start) + "ms ==="); } }
Example #7
Source File: ReducePerformance.java From flink with Apache License 2.0 | 6 votes |
private static <T, B extends CopyableIterator<T>> void testReducePerformance (B iterator, TypeInformation<T> typeInfo, CombineHint hint, int numRecords, boolean print) throws Exception { ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().enableObjectReuse(); @SuppressWarnings("unchecked") DataSet<T> output = env.fromParallelCollection(new SplittableRandomIterator<T, B>(numRecords, iterator), typeInfo) .groupBy("0") .reduce(new SumReducer()).setCombineHint(hint); long start = System.currentTimeMillis(); System.out.println(output.count()); long end = System.currentTimeMillis(); if (print) { System.out.println("=== Time for " + iterator.getClass().getSimpleName() + " with hint " + hint.toString() + ": " + (end - start) + "ms ==="); } }
Example #8
Source File: ReduceOperator.java From flink with Apache License 2.0 | 6 votes |
private static <T, K> org.apache.flink.api.common.operators.SingleInputOperator<?, T, ?> translateSelectorFunctionReducer( SelectorFunctionKeys<T, ?> rawKeys, ReduceFunction<T> function, TypeInformation<T> inputType, String name, Operator<T> input, int parallelism, CombineHint hint) { @SuppressWarnings("unchecked") final SelectorFunctionKeys<T, K> keys = (SelectorFunctionKeys<T, K>) rawKeys; TypeInformation<Tuple2<K, T>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys); Operator<Tuple2<K, T>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys); PlanUnwrappingReduceOperator<T, K> reducer = new PlanUnwrappingReduceOperator<>(function, keys, name, inputType, typeInfoWithKey); reducer.setInput(keyedInput); reducer.setParallelism(parallelism); reducer.setCombineHint(hint); return KeyFunctions.appendKeyRemover(reducer, keys); }
Example #9
Source File: DistinctOperator.java From flink with Apache License 2.0 | 6 votes |
private static <IN, K> org.apache.flink.api.common.operators.SingleInputOperator<?, IN, ?> translateSelectorFunctionDistinct( SelectorFunctionKeys<IN, ?> rawKeys, ReduceFunction<IN> function, TypeInformation<IN> outputType, String name, Operator<IN> input, int parallelism, CombineHint hint) { @SuppressWarnings("unchecked") final SelectorFunctionKeys<IN, K> keys = (SelectorFunctionKeys<IN, K>) rawKeys; TypeInformation<Tuple2<K, IN>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys); Operator<Tuple2<K, IN>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys); PlanUnwrappingReduceOperator<IN, K> reducer = new PlanUnwrappingReduceOperator<>(function, keys, name, outputType, typeInfoWithKey); reducer.setInput(keyedInput); reducer.setCombineHint(hint); reducer.setParallelism(parallelism); return KeyFunctions.appendKeyRemover(reducer, keys); }
Example #10
Source File: Simplify.java From flink with Apache License 2.0 | 6 votes |
@Override public Graph<K, VV, EV> runInternal(Graph<K, VV, EV> input) throws Exception { // Edges DataSet<Edge<K, EV>> edges = input .getEdges() .filter(new RemoveSelfLoops<>()) .setParallelism(parallelism) .name("Remove self-loops") .distinct(0, 1) .setCombineHint(CombineHint.NONE) .setParallelism(parallelism) .name("Remove duplicate edges"); // Graph return Graph.fromDataSet(input.getVertices(), edges, input.getContext()); }
Example #11
Source File: Simplify.java From flink with Apache License 2.0 | 6 votes |
@Override public Graph<K, VV, EV> runInternal(Graph<K, VV, EV> input) throws Exception { // Edges DataSet<Edge<K, EV>> edges = input .getEdges() .flatMap(new SymmetrizeAndRemoveSelfLoops<>(clipAndFlip)) .setParallelism(parallelism) .name("Remove self-loops") .distinct(0, 1) .setCombineHint(CombineHint.NONE) .setParallelism(parallelism) .name("Remove duplicate edges"); // Graph return Graph.fromDataSet(input.getVertices(), edges, input.getContext()); }
Example #12
Source File: Simplify.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
@Override public Graph<K, VV, EV> runInternal(Graph<K, VV, EV> input) throws Exception { // Edges DataSet<Edge<K, EV>> edges = input .getEdges() .flatMap(new SymmetrizeAndRemoveSelfLoops<>(clipAndFlip)) .setParallelism(parallelism) .name("Remove self-loops") .distinct(0, 1) .setCombineHint(CombineHint.NONE) .setParallelism(parallelism) .name("Remove duplicate edges"); // Graph return Graph.fromDataSet(input.getVertices(), edges, input.getContext()); }
Example #13
Source File: Simplify.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
@Override public Graph<K, VV, EV> runInternal(Graph<K, VV, EV> input) throws Exception { // Edges DataSet<Edge<K, EV>> edges = input .getEdges() .filter(new RemoveSelfLoops<>()) .setParallelism(parallelism) .name("Remove self-loops") .distinct(0, 1) .setCombineHint(CombineHint.NONE) .setParallelism(parallelism) .name("Remove duplicate edges"); // Graph return Graph.fromDataSet(input.getVertices(), edges, input.getContext()); }
Example #14
Source File: DistinctOperator.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
private static <IN, K> org.apache.flink.api.common.operators.SingleInputOperator<?, IN, ?> translateSelectorFunctionDistinct( SelectorFunctionKeys<IN, ?> rawKeys, ReduceFunction<IN> function, TypeInformation<IN> outputType, String name, Operator<IN> input, int parallelism, CombineHint hint) { @SuppressWarnings("unchecked") final SelectorFunctionKeys<IN, K> keys = (SelectorFunctionKeys<IN, K>) rawKeys; TypeInformation<Tuple2<K, IN>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys); Operator<Tuple2<K, IN>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys); PlanUnwrappingReduceOperator<IN, K> reducer = new PlanUnwrappingReduceOperator<>(function, keys, name, outputType, typeInfoWithKey); reducer.setInput(keyedInput); reducer.setCombineHint(hint); reducer.setParallelism(parallelism); return KeyFunctions.appendKeyRemover(reducer, keys); }
Example #15
Source File: ReduceOperator.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
private static <T, K> org.apache.flink.api.common.operators.SingleInputOperator<?, T, ?> translateSelectorFunctionReducer( SelectorFunctionKeys<T, ?> rawKeys, ReduceFunction<T> function, TypeInformation<T> inputType, String name, Operator<T> input, int parallelism, CombineHint hint) { @SuppressWarnings("unchecked") final SelectorFunctionKeys<T, K> keys = (SelectorFunctionKeys<T, K>) rawKeys; TypeInformation<Tuple2<K, T>> typeInfoWithKey = KeyFunctions.createTypeWithKey(keys); Operator<Tuple2<K, T>> keyedInput = KeyFunctions.appendKeyExtractor(input, keys); PlanUnwrappingReduceOperator<T, K> reducer = new PlanUnwrappingReduceOperator<>(function, keys, name, inputType, typeInfoWithKey); reducer.setInput(keyedInput); reducer.setParallelism(parallelism); reducer.setCombineHint(hint); return KeyFunctions.appendKeyRemover(reducer, keys); }
Example #16
Source File: LocalClusteringCoefficient.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, 1 DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, LongValue>> vertexDegree = input .run(new VertexDegree<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #17
Source File: VertexDegree.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Vertex<K, LongValue>> runInternal(Graph<K, VV, EV> input) throws Exception { MapFunction<Edge<K, EV>, Vertex<K, LongValue>> mapEdgeToId = reduceOnTargetId.get() ? new MapEdgeToTargetId<>() : new MapEdgeToSourceId<>(); // v DataSet<Vertex<K, LongValue>> vertexIds = input .getEdges() .map(mapEdgeToId) .setParallelism(parallelism) .name("Edge to vertex ID"); // v, deg(v) DataSet<Vertex<K, LongValue>> degree = vertexIds .groupBy(0) .reduce(new DegreeCount<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Degree count"); if (includeZeroDegreeVertices.get()) { degree = input .getVertices() .leftOuterJoin(degree) .where(0) .equalTo(0) .with(new JoinVertexWithVertexDegree<>()) .setParallelism(parallelism) .name("Zero degree vertices"); } return degree; }
Example #18
Source File: ReduceITCase.java From Flink-CEPplus with Apache License 2.0 | 5 votes |
@Test public void testReduceOnTupleWithMultipleKeyExpressionsWithHashHint() throws Exception { /* * Case 2 with String-based field expression */ final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); DataSet<Tuple5<Integer, Long, Integer, String, Long>> ds = CollectionDataSets.get5TupleDataSet(env); DataSet<Tuple5<Integer, Long, Integer, String, Long>> reduceDs = ds .groupBy("f4", "f0").reduce(new Tuple5Reduce()).setCombineHint(CombineHint.HASH); List<Tuple5<Integer, Long, Integer, String, Long>> result = reduceDs .collect(); String expected = "1,1,0,Hallo,1\n" + "2,3,2,Hallo Welt wie,1\n" + "2,2,1,Hallo Welt,2\n" + "3,9,0,P-),2\n" + "3,6,5,BCD,3\n" + "4,17,0,P-),1\n" + "4,17,0,P-),2\n" + "5,11,10,GHI,1\n" + "5,29,0,P-),2\n" + "5,25,0,P-),3\n"; compareResultAsTuples(result, expected); }
Example #19
Source File: EdgeMetrics.java From flink with Apache License 2.0 | 5 votes |
@Override public EdgeMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); // s, t, (d(s), d(t)) DataSet<Edge<K, Tuple3<EV, LongValue, LongValue>>> edgeDegreePair = input .run(new EdgeDegreePair<K, VV, EV>() .setReduceOnTargetId(reduceOnTargetId) .setParallelism(parallelism)); // s, d(s), count of (u, v) where deg(u) < deg(v) or (deg(u) == deg(v) and u < v) DataSet<Tuple3<K, LongValue, LongValue>> edgeStats = edgeDegreePair .map(new EdgeStats<>()) .setParallelism(parallelism) .name("Edge stats") .groupBy(0) .reduce(new SumEdgeStats<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum edge stats"); edgeMetricsHelper = new EdgeMetricsHelper<>(); edgeStats .output(edgeMetricsHelper) .setParallelism(parallelism) .name("Edge metrics"); return this; }
Example #20
Source File: EdgeMetrics.java From flink with Apache License 2.0 | 5 votes |
@Override public EdgeMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); // s, t, (d(s), d(t)) DataSet<Edge<K, Tuple3<EV, Degrees, Degrees>>> edgeDegreesPair = input .run(new EdgeDegreesPair<K, VV, EV>() .setParallelism(parallelism)); // s, d(s), count of (u, v) where deg(u) < deg(v) or (deg(u) == deg(v) and u < v) DataSet<Tuple3<K, Degrees, LongValue>> edgeStats = edgeDegreesPair .flatMap(new EdgeStats<>()) .setParallelism(parallelism) .name("Edge stats") .groupBy(0, 1) .reduceGroup(new ReduceEdgeStats<>()) .setParallelism(parallelism) .name("Reduce edge stats") .groupBy(0) .reduce(new SumEdgeStats<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum edge stats"); edgeMetricsHelper = new EdgeMetricsHelper<>(); edgeStats .output(edgeMetricsHelper) .setParallelism(parallelism) .name("Edge metrics"); return this; }
Example #21
Source File: LocalClusteringCoefficient.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w, bitmask DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, edge count DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #22
Source File: LocalClusteringCoefficient.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, 1 DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, LongValue>> vertexDegree = input .run(new VertexDegree<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #23
Source File: EdgeMetrics.java From flink with Apache License 2.0 | 5 votes |
@Override public EdgeMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); // s, t, (d(s), d(t)) DataSet<Edge<K, Tuple3<EV, Degrees, Degrees>>> edgeDegreesPair = input .run(new EdgeDegreesPair<K, VV, EV>() .setParallelism(parallelism)); // s, d(s), count of (u, v) where deg(u) < deg(v) or (deg(u) == deg(v) and u < v) DataSet<Tuple3<K, Degrees, LongValue>> edgeStats = edgeDegreesPair .flatMap(new EdgeStats<>()) .setParallelism(parallelism) .name("Edge stats") .groupBy(0, 1) .reduceGroup(new ReduceEdgeStats<>()) .setParallelism(parallelism) .name("Reduce edge stats") .groupBy(0) .reduce(new SumEdgeStats<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum edge stats"); edgeMetricsHelper = new EdgeMetricsHelper<>(); edgeStats .output(edgeMetricsHelper) .setParallelism(parallelism) .name("Edge metrics"); return this; }
Example #24
Source File: EdgeMetrics.java From flink with Apache License 2.0 | 5 votes |
@Override public EdgeMetrics<K, VV, EV> run(Graph<K, VV, EV> input) throws Exception { super.run(input); // s, t, (d(s), d(t)) DataSet<Edge<K, Tuple3<EV, LongValue, LongValue>>> edgeDegreePair = input .run(new EdgeDegreePair<K, VV, EV>() .setReduceOnTargetId(reduceOnTargetId) .setParallelism(parallelism)); // s, d(s), count of (u, v) where deg(u) < deg(v) or (deg(u) == deg(v) and u < v) DataSet<Tuple3<K, LongValue, LongValue>> edgeStats = edgeDegreePair .map(new EdgeStats<>()) .setParallelism(parallelism) .name("Edge stats") .groupBy(0) .reduce(new SumEdgeStats<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum edge stats"); edgeMetricsHelper = new EdgeMetricsHelper<>(); edgeStats .output(edgeMetricsHelper) .setParallelism(parallelism) .name("Edge metrics"); return this; }
Example #25
Source File: VertexInDegree.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Vertex<K, LongValue>> runInternal(Graph<K, VV, EV> input) throws Exception { // t DataSet<Vertex<K, LongValue>> targetIds = input .getEdges() .map(new MapEdgeToTargetId<>()) .setParallelism(parallelism) .name("Edge to target ID"); // t, d(t) DataSet<Vertex<K, LongValue>> targetDegree = targetIds .groupBy(0) .reduce(new DegreeCount<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Degree count"); if (includeZeroDegreeVertices.get()) { targetDegree = input.getVertices() .leftOuterJoin(targetDegree) .where(0) .equalTo(0) .with(new JoinVertexWithVertexDegree<>()) .setParallelism(parallelism) .name("Zero degree vertices"); } return targetDegree; }
Example #26
Source File: ReduceITCase.java From flink with Apache License 2.0 | 5 votes |
@Test public void testReduceOnTupleWithMultipleKeyExpressionsWithHashHint() throws Exception { /* * Case 2 with String-based field expression */ final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); DataSet<Tuple5<Integer, Long, Integer, String, Long>> ds = CollectionDataSets.get5TupleDataSet(env); DataSet<Tuple5<Integer, Long, Integer, String, Long>> reduceDs = ds .groupBy("f4", "f0").reduce(new Tuple5Reduce()).setCombineHint(CombineHint.HASH); List<Tuple5<Integer, Long, Integer, String, Long>> result = reduceDs .collect(); String expected = "1,1,0,Hallo,1\n" + "2,3,2,Hallo Welt wie,1\n" + "2,2,1,Hallo Welt,2\n" + "3,9,0,P-),2\n" + "3,6,5,BCD,3\n" + "4,17,0,P-),1\n" + "4,17,0,P-),2\n" + "5,11,10,GHI,1\n" + "5,29,0,P-),2\n" + "5,25,0,P-),3\n"; compareResultAsTuples(result, expected); }
Example #27
Source File: ReduceOperator.java From flink with Apache License 2.0 | 5 votes |
public ReduceOperator(Grouping<IN> input, ReduceFunction<IN> function, String defaultName) { super(input.getInputDataSet(), input.getInputDataSet().getType()); this.function = function; this.grouper = input; this.defaultName = defaultName; this.hint = CombineHint.OPTIMIZER_CHOOSES; }
Example #28
Source File: LocalClusteringCoefficient.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // u, v, w, bitmask DataSet<TriangleListing.Result<K>> triangles = input .run(new TriangleListing<K, VV, EV>() .setParallelism(parallelism)); // u, edge count DataSet<Tuple2<K, LongValue>> triangleVertices = triangles .flatMap(new SplitTriangles<>()) .name("Split triangle vertices"); // u, triangle count DataSet<Tuple2<K, LongValue>> vertexTriangleCount = triangleVertices .groupBy(0) .reduce(new CountTriangles<>()) .setCombineHint(CombineHint.HASH) .name("Count triangles") .setParallelism(parallelism); // u, deg(u) DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices.get()) .setParallelism(parallelism)); // u, deg(u), triangle count return vertexDegree .leftOuterJoin(vertexTriangleCount) .where(0) .equalTo(0) .with(new JoinVertexDegreeWithTriangleCount<>()) .setParallelism(parallelism) .name("Clustering coefficient"); }
Example #29
Source File: VertexDegree.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Vertex<K, LongValue>> runInternal(Graph<K, VV, EV> input) throws Exception { MapFunction<Edge<K, EV>, Vertex<K, LongValue>> mapEdgeToId = reduceOnTargetId.get() ? new MapEdgeToTargetId<>() : new MapEdgeToSourceId<>(); // v DataSet<Vertex<K, LongValue>> vertexIds = input .getEdges() .map(mapEdgeToId) .setParallelism(parallelism) .name("Edge to vertex ID"); // v, deg(v) DataSet<Vertex<K, LongValue>> degree = vertexIds .groupBy(0) .reduce(new DegreeCount<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Degree count"); if (includeZeroDegreeVertices.get()) { degree = input .getVertices() .leftOuterJoin(degree) .where(0) .equalTo(0) .with(new JoinVertexWithVertexDegree<>()) .setParallelism(parallelism) .name("Zero degree vertices"); } return degree; }
Example #30
Source File: VertexOutDegree.java From flink with Apache License 2.0 | 5 votes |
@Override public DataSet<Vertex<K, LongValue>> runInternal(Graph<K, VV, EV> input) throws Exception { // s DataSet<Vertex<K, LongValue>> sourceIds = input .getEdges() .map(new MapEdgeToSourceId<>()) .setParallelism(parallelism) .name("Edge to source ID"); // s, d(s) DataSet<Vertex<K, LongValue>> sourceDegree = sourceIds .groupBy(0) .reduce(new DegreeCount<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Degree count"); if (includeZeroDegreeVertices.get()) { sourceDegree = input.getVertices() .leftOuterJoin(sourceDegree) .where(0) .equalTo(0) .with(new JoinVertexWithVertexDegree<>()) .setParallelism(parallelism) .name("Zero degree vertices"); } return sourceDegree; }