org.deeplearning4j.zoo.model.helper.DarknetHelper Java Examples
The following examples show how to use
org.deeplearning4j.zoo.model.helper.DarknetHelper.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: YOLOOutputAdapter.java From konduit-serving with Apache License 2.0 | 6 votes |
@Builder public YOLOOutputAdapter(double threshold, int[] inputShape, Labels labels, int numLabels, double[][] boundingBoxPriors) { this.labels = labels == null ? getLabels() : labels; if (threshold == 0.0) this.threshold = 0.5; else this.threshold = threshold; if (inputShape != null) this.inputShape = inputShape; else this.inputShape = new int[]{3, 608, 608}; this.labels = labels; this.numLabels = numLabels; if (boundingBoxPriors == null) this.boundingBoxPriors = Nd4j.create(YOLO2.DEFAULT_PRIOR_BOXES).castTo(DataType.FLOAT); else { this.boundingBoxPriors = Nd4j.create(boundingBoxPriors).castTo(DataType.FLOAT); } gridWidth = DarknetHelper.getGridWidth(inputShape); gridHeight = DarknetHelper.getGridHeight(inputShape); }
Example #2
Source File: YOLOOutputAdapter.java From konduit-serving with Apache License 2.0 | 5 votes |
public YOLOOutputAdapter(double threshold, Labels labels, int numLabels) { this.threshold = threshold; inputShape = new int[]{3, 608, 608}; this.labels = labels; this.numLabels = numLabels; boundingBoxPriors = Nd4j.create(YOLO2.DEFAULT_PRIOR_BOXES).castTo(DataType.FLOAT); gridWidth = DarknetHelper.getGridWidth(inputShape); gridHeight = DarknetHelper.getGridHeight(inputShape); }
Example #3
Source File: TestInstantiation.java From deeplearning4j with Apache License 2.0 | 5 votes |
public static void runTest(ZooModel model, String modelName, int numClasses) throws Exception { ignoreIfCuda(); int gridWidth = -1; int gridHeight = -1; if (modelName.equals("TinyYOLO") || modelName.equals("YOLO2")) { int[] inputShapes = model.metaData().getInputShape()[0]; gridWidth = DarknetHelper.getGridWidth(inputShapes); gridHeight = DarknetHelper.getGridHeight(inputShapes); numClasses += 4; } // set up data iterator int[] inputShape = model.metaData().getInputShape()[0]; DataSetIterator iter = new BenchmarkDataSetIterator( new int[]{8, inputShape[0], inputShape[1], inputShape[2]}, numClasses, 1, gridWidth, gridHeight); Model initializedModel = model.init(); AsyncDataSetIterator async = new AsyncDataSetIterator(iter); if (initializedModel instanceof MultiLayerNetwork) { ((MultiLayerNetwork) initializedModel).fit(async); } else { ((ComputationGraph) initializedModel).fit(async); } async.shutdown(); // clean up for current model model = null; initializedModel = null; async = null; iter = null; Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread(); System.gc(); Thread.sleep(1000); System.gc(); }