net.sf.javaml.core.Instance Java Examples
The following examples show how to use
net.sf.javaml.core.Instance.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: JMLNeurophClassifier.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Classifies instance as one of possible classes * @param instnc Instance to classify * @return Object class as Object */ @Override public Object classify(Instance instnc) { double[] item = convertInstanceToDoubleArray(instnc); // set neural network input neuralNet.setInput(item); // calculate neural network output neuralNet.calculate(); // find neuron with highest output Neuron maxNeuron = null; double maxOut = Double.NEGATIVE_INFINITY; for (Neuron neuron : neuralNet.getOutputNeurons()) { if (neuron.getOutput() > maxOut) { maxNeuron = neuron; maxOut = neuron.getOutput(); } } // and return its label return maxNeuron.getLabel(); }
Example #2
Source File: JMLNeurophClassifier.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Calculates predict values for every possible class that * instance can be classified as that * @param instnc Instance * @return Map<Object, Double> */ @Override public Map<Object, Double> classDistribution(Instance instnc) { // Convert instance to double array double[] item = convertInstanceToDoubleArray(instnc); // set neural network input neuralNet.setInput(item); // calculate neural network output neuralNet.calculate(); // find neuron with highest output Map<Object, Double> possibilities = new HashMap<Object, Double>(); for (Neuron neuron : neuralNet.getOutputNeurons()) { possibilities.put(neuron.getLabel(), neuron.getOutput()); } return possibilities; }
Example #3
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 6 votes |
public void makeClusteredList2Signals(Dataset[] clusters,HashMap<Integer,MatrixNodeForKMeans> map){ clusterList = new ArrayList<ATACClusterNode>(); ATACClusterNode temp = null; covMat = new ArrayList<double[][]>(); for (int i = 0; i < clusters.length;i++){ Dataset cluster = clusters[i]; StorelessCovariance cov = new StorelessCovariance(2); for (int x = 0; x< cluster.size();x++){ Instance ins = cluster.get(x); MatrixNodeForKMeans node = map.get(ins.getID()); temp = new ATACClusterNode(node.getChrom(),node.getPos(),node.getEnrich1(),node.getEnrich2(), node.getEnrich3(),node.getIndex(),i); clusterList.add(temp); double[] row1 = new double[2]; row1[0] = node.getEnrich1(); row1[1] = node.getEnrich2(); cov.increment(row1); } double[][] covM = cov.getCovarianceMatrix().getData(); covMat.add(covM); } clusters = null; map = null; Collections.sort(clusterList,ATACClusterNode.positionComparator); }
Example #4
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 6 votes |
public void makeClusteredList3Signals(Dataset[] clusters,HashMap<Integer,MatrixNodeForKMeans> map){ clusterList = new ArrayList<ATACClusterNode>(); ATACClusterNode temp = null; covMat = new ArrayList<double[][]>(); for (int i = 0; i < clusters.length;i++){ Dataset cluster = clusters[i]; StorelessCovariance cov = new StorelessCovariance(3); for (int x = 0; x< cluster.size();x++){ Instance ins = cluster.get(x); MatrixNodeForKMeans node = map.get(ins.getID()); temp = new ATACClusterNode(node.getChrom(),node.getPos(),node.getEnrich1(),node.getEnrich2(), node.getEnrich3(),node.getIndex(),i); clusterList.add(temp); double[] row1 = new double[3]; row1[0] = node.getEnrich1(); row1[1] = node.getEnrich2(); row1[2] = node.getEnrich3(); cov.increment(row1); } double[][] covM = cov.getCovarianceMatrix().getData(); covMat.add(covM); } clusters = null; map = null; Collections.sort(clusterList,ATACClusterNode.positionComparator); }
Example #5
Source File: JMLNeurophClassifier.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Convert instance attribute values to double array values * @param instnc Instance to convert * @return double[] */ private double[] convertInstanceToDoubleArray(Instance instnc) { Iterator attributeIterator = instnc.iterator(); double[] item = new double[instnc.noAttributes()]; int index = 0; while (attributeIterator.hasNext()) { Double attrValue = (Double) attributeIterator.next(); item[index] = attrValue.doubleValue(); index++; } return item; }
Example #6
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Prints Java-ML data set * * @param jmlDataset Dataset Java-ML data set */ public static void printDataset(Dataset jmlDataset) { System.out.println("JML dataset"); Iterator iterator = jmlDataset.iterator(); while (iterator.hasNext()) { Instance instance = (Instance) iterator.next(); System.out.println("inputs"); System.out.println(instance.values()); System.out.println(instance.classValue()); } }
Example #7
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Converts Java-ML data set to Map * * @param jmlDataset Dataset Java-ML data set * @return Map converted from Java-ML data set */ private static Map<double[], String> convertJMLDatasetToMap(Dataset jmlDataset) { //number of attributes without class attribute int numOfAttributes = jmlDataset.noAttributes(); //initialize map Map<double[], String> itemClassMap = new HashMap<double[], String>(); //iterate through jml dataset for (Instance dataRow : jmlDataset) { //initialize double array for values from dataset double[] values = new double[numOfAttributes]; int ind = 0; //iterate through values in dataset instance an adding them in double array for (Double val : dataRow) { values[ind] = val; ind++; } //put attribute values and class value in map itemClassMap.put(values, dataRow.classValue().toString()); } return itemClassMap; }
Example #8
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Test JMLNeurophClassifier * * @param jmlDataset Dataset Java-ML data set */ private static void testJMLNeurophClassifier(Dataset jmlDataset) { MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(4, 16, 3); // set labels for output neurons neuralNet.getOutputNeurons().get(0).setLabel("Setosa"); neuralNet.getOutputNeurons().get(1).setLabel("Versicolor"); neuralNet.getOutputNeurons().get(2).setLabel("Virginica"); // initialize NeurophJMLClassifier JMLNeurophClassifier jmlnClassifier = new JMLNeurophClassifier(neuralNet); // Process Java-ML data set jmlnClassifier.buildClassifier(jmlDataset); // test item //double[] item = {5.1, 3.5, 1.4, 0.2}; // normalized item is below double[] item = {-0.27777777777777773, 0.1249999999999999, -0.4322033898305085, -0.45833333333333337}; // Java-ML instance out of test item Instance instance = new DenseInstance(item); // why are these not normalised? System.out.println("NeurophJMLClassifier - classify of {0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667}"); System.out.println(jmlnClassifier.classify(instance)); System.out.println("NeurophJMLClassifier - classDistribution of {0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667}"); System.out.println(jmlnClassifier.classDistribution(instance)); }
Example #9
Source File: DomDistance.java From apogen with Apache License 2.0 | 4 votes |
public Dataset createDataset() { for (String k : domDistancesMap.keySet()) { Collection<BigDecimal> v = domDistancesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); data.add(instance); } return data; }
Example #10
Source File: UrlDistance.java From apogen with Apache License 2.0 | 4 votes |
/** * create the URL distances matrix * * @return */ public Dataset createDataset() { for (String k : urlDistancesMap.keySet()) { Collection<BigDecimal> v = urlDistancesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); data.add(instance); } return data; }
Example #11
Source File: WordFrequency.java From apogen with Apache License 2.0 | 4 votes |
/** * create the dataset for body frequencies * * @return */ public Dataset createDatasetBody() { for (String k : wordsBodyFrequenciesMap.keySet()) { Collection<BigDecimal> v = wordsBodyFrequenciesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); dataBody.add(instance); } return dataBody; }
Example #12
Source File: WordFrequency.java From apogen with Apache License 2.0 | 4 votes |
/** * create the dataset for thal frequencies * * @return */ public Dataset createDatasetThal() { for (String k : wordsThalFrequenciesMap.keySet()) { Collection<BigDecimal> v = wordsThalFrequenciesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); dataThal.add(instance); } return dataThal; }
Example #13
Source File: TagFrequency.java From apogen with Apache License 2.0 | 4 votes |
/** * exports the tags frequencies map in a Java-ML Dataset * * @return */ public Dataset createDataset() { for (String k : tagsFrequenciesMap.keySet()) { Collection<BigDecimal> v = tagsFrequenciesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); data.add(instance); } return data; }