org.neuroph.util.NeuralNetworkType Java Examples
The following examples show how to use
org.neuroph.util.NeuralNetworkType.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: Hopfield.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Creates Hopfield network architecture * * @param neuronsCount * neurons number in Hopfied network * @param neuronProperties * neuron properties */ private void createNetwork(int neuronsCount, NeuronProperties neuronProperties) { // set network type this.setNetworkType(NeuralNetworkType.HOPFIELD); // createLayer neurons in layer Layer layer = LayerFactory.createLayer(neuronsCount, neuronProperties); // createLayer full connectivity in layer ConnectionFactory.fullConnect(layer, 0.1); // add layer to network this.addLayer(layer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set Hopfield learning rule for this network //this.setLearningRule(new HopfieldLearning(this)); this.setLearningRule(new BinaryHebbianLearning()); }
Example #2
Source File: MaxNet.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates MaxNet network architecture * * @param neuronNum * neuron number in network * @param neuronProperties * neuron properties */ private void createNetwork(int neuronsCount) { // set network type this.setNetworkType(NeuralNetworkType.MAXNET); // createLayer input layer in layer Layer inputLayer = LayerFactory.createLayer(neuronsCount, new NeuronProperties()); this.addLayer(inputLayer); // createLayer properties for neurons in output layer NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("neuronType", CompetitiveNeuron.class); neuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP); // createLayer full connectivity in competitive layer CompetitiveLayer competitiveLayer = new CompetitiveLayer(neuronsCount, neuronProperties); // add competitive layer to network this.addLayer(competitiveLayer); double competitiveWeight = -(1 / (double) neuronsCount); // createLayer full connectivity within competitive layer ConnectionFactory.fullConnect(competitiveLayer, competitiveWeight, 1); // createLayer forward connectivity from input to competitive layer ConnectionFactory.forwardConnect(inputLayer, competitiveLayer, 1); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); }
Example #3
Source File: NeurophXOR.java From tutorials with MIT License | 5 votes |
public static NeuralNetwork assembleNeuralNetwork() { Layer inputLayer = new Layer(); inputLayer.addNeuron(new Neuron()); inputLayer.addNeuron(new Neuron()); Layer hiddenLayerOne = new Layer(); hiddenLayerOne.addNeuron(new Neuron()); hiddenLayerOne.addNeuron(new Neuron()); hiddenLayerOne.addNeuron(new Neuron()); hiddenLayerOne.addNeuron(new Neuron()); Layer hiddenLayerTwo = new Layer(); hiddenLayerTwo.addNeuron(new Neuron()); hiddenLayerTwo.addNeuron(new Neuron()); hiddenLayerTwo.addNeuron(new Neuron()); hiddenLayerTwo.addNeuron(new Neuron()); Layer outputLayer = new Layer(); outputLayer.addNeuron(new Neuron()); NeuralNetwork ann = new NeuralNetwork(); ann.addLayer(0, inputLayer); ann.addLayer(1, hiddenLayerOne); ConnectionFactory.fullConnect(ann.getLayerAt(0), ann.getLayerAt(1)); ann.addLayer(2, hiddenLayerTwo); ConnectionFactory.fullConnect(ann.getLayerAt(1), ann.getLayerAt(2)); ann.addLayer(3, outputLayer); ConnectionFactory.fullConnect(ann.getLayerAt(2), ann.getLayerAt(3)); ConnectionFactory.fullConnect(ann.getLayerAt(0), ann.getLayerAt(ann.getLayersCount() - 1), false); ann.setInputNeurons(inputLayer.getNeurons()); ann.setOutputNeurons(outputLayer.getNeurons()); ann.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON); return ann; }
Example #4
Source File: Model.java From o2oa with GNU Affero General Public License v3.0 | 5 votes |
public NeuralNetwork<MomentumBackpropagation> createNeuralNetwork(Integer inValueCount, Integer outValueCount, Integer hiddenLayerCount) { NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class); NeuronProperties hiddenNeuronProperties = new NeuronProperties(InputOutputNeuron.class, WeightedSum.class, Sigmoid.class); NeuronProperties outputNeuronProperties = new NeuronProperties(InputOutputNeuron.class, WeightedSum.class, Sigmoid.class); NeuralNetwork<MomentumBackpropagation> neuralNetwork = new NeuralNetwork<>(); neuralNetwork.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON); Layer inputLayer = LayerFactory.createLayer(inValueCount, inputNeuronProperties); inputLayer.addNeuron(new BiasNeuron()); neuralNetwork.addLayer(inputLayer); List<Integer> hiddenNeurons = this.hiddenNeurons(inValueCount, outValueCount, hiddenLayerCount); for (Integer count : hiddenNeurons) { Layer layer = LayerFactory.createLayer(count, hiddenNeuronProperties); layer.addNeuron(new BiasNeuron()); neuralNetwork.addLayer(layer); } Layer outputLayer = LayerFactory.createLayer(outValueCount, outputNeuronProperties); neuralNetwork.addLayer(outputLayer); for (int i = 0; i < (neuralNetwork.getLayersCount() - 1); i++) { Layer prevLayer = neuralNetwork.getLayers().get(i); Layer nextLayer = neuralNetwork.getLayers().get(i + 1); ConnectionFactory.fullConnect(prevLayer, nextLayer); } neuralNetwork.setLearningRule(this.createMomentumBackpropagation( MapTools.getDouble(this.getPropertyMap(), PROPERTY_MLP_MAXERROR, DEFAULT_MLP_MAXERROR), MapTools.getInteger(this.getPropertyMap(), PROPERTY_MLP_MAXITERATION, DEFAULT_MLP_MAXITERATION), MapTools.getDouble(this.getPropertyMap(), PROPERTY_MLP_LEARNINGRATE, DEFAULT_MLP_LEARNINGRATE), MapTools.getDouble(this.getPropertyMap(), PROPERTY_MLP_MOMENTUM, DEFAULT_MLP_MOMENTUM))); NeuralNetworkFactory.setDefaultIO(neuralNetwork); neuralNetwork.randomizeWeights(); return neuralNetwork; }
Example #5
Source File: NeuralNetworkTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testSetNetworkType() { instance.setNetworkType(NeuralNetworkType.PERCEPTRON); assertTrue(instance.getNetworkType() == NeuralNetworkType.PERCEPTRON); assertTrue(instance.getNetworkType().toString().equals("PERCEPTRON")); instance.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON); assertTrue(instance.getNetworkType() == NeuralNetworkType.MULTI_LAYER_PERCEPTRON); assertTrue(instance.getNetworkType().toString().equals("MULTI_LAYER_PERCEPTRON")); }
Example #6
Source File: NeuralNetworkTest.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Test public void testGetNetworkType() { assertNull(instance.getNetworkType()); instance.setNetworkType(NeuralNetworkType.PERCEPTRON); assertTrue(instance.getNetworkType() == NeuralNetworkType.PERCEPTRON); assertTrue(instance.getNetworkType().toString().equals("PERCEPTRON")); }
Example #7
Source File: CompetitiveNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates Competitive network architecture * * @param inputNeuronsCount * input neurons number * @param outputNeuronsCount * output neurons number * @param neuronProperties * neuron properties */ private void createNetwork(int inputNeuronsCount, int outputNeuronsCount) { // set network type this.setNetworkType(NeuralNetworkType.COMPETITIVE); // createLayer input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, new NeuronProperties()); this.addLayer(inputLayer); // createLayer properties for neurons in output layer NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("neuronType", CompetitiveNeuron.class); neuronProperties.setProperty("inputFunction", WeightedSum.class); neuronProperties.setProperty("transferFunction",TransferFunctionType.RAMP); // createLayer full connectivity in competitive layer CompetitiveLayer competitiveLayer = new CompetitiveLayer(outputNeuronsCount, neuronProperties); // add competitive layer to network this.addLayer(competitiveLayer); double competitiveWeight = -(1 / (double) outputNeuronsCount); // createLayer full connectivity within competitive layer ConnectionFactory.fullConnect(competitiveLayer, competitiveWeight, 1); // createLayer full connectivity from input to competitive layer ConnectionFactory.fullConnect(inputLayer, competitiveLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); this.setLearningRule(new CompetitiveLearning()); }
Example #8
Source File: Instar.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates Instar architecture with specified number of input neurons * * @param inputNeuronsCount * number of neurons in input layer */ private void createNetwork(int inputNeuronsCount ) { // set network type this.setNetworkType(NeuralNetworkType.INSTAR); // init neuron settings for this type of network NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP); // create input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties); this.addLayer(inputLayer); // createLayer output layer neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP); Layer outputLayer = LayerFactory.createLayer(1, neuronProperties); this.addLayer(outputLayer); // create full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set appropriate learning rule for this network this.setLearningRule(new InstarLearning()); }
Example #9
Source File: Outstar.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates Outstar architecture with specified number of neurons in * output layer * * @param outputNeuronsCount * number of neurons in output layer */ private void createNetwork(int outputNeuronsCount ) { // set network type this.setNetworkType(NeuralNetworkType.OUTSTAR); // init neuron settings for this type of network NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("transferFunction", TransferFunctionType.STEP); // create input layer Layer inputLayer = LayerFactory.createLayer(1, neuronProperties); this.addLayer(inputLayer); // createLayer output layer neuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP); Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, neuronProperties); this.addLayer(outputLayer); // create full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set outstar learning rule for this network this.setLearningRule(new OutstarLearning()); }
Example #10
Source File: SupervisedHebbianNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** *Creates an instance of Supervised Hebbian Network with specified number * of neurons in input layer, output layer and transfer function * * @param inputNeuronsNum * number of neurons in input layer * @param outputNeuronsNum * number of neurons in output layer * @param transferFunctionType * transfer function type */ private void createNetwork(int inputNeuronsNum, int outputNeuronsNum, TransferFunctionType transferFunctionType) { // init neuron properties NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("transferFunction", transferFunctionType); neuronProperties.setProperty("transferFunction.slope", new Double(1)); neuronProperties.setProperty("transferFunction.yHigh", new Double(1)); neuronProperties.setProperty("transferFunction.xHigh", new Double(1)); neuronProperties.setProperty("transferFunction.yLow", new Double(-1)); neuronProperties.setProperty("transferFunction.xLow", new Double(-1)); // set network type code this.setNetworkType(NeuralNetworkType.SUPERVISED_HEBBIAN_NET); // createLayer input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum, neuronProperties); this.addLayer(inputLayer); // createLayer output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum, neuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set appropriate learning rule for this network this.setLearningRule(new SupervisedHebbianLearning()); }
Example #11
Source File: BAM.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates BAM network architecture * * @param inputNeuronsCount * number of neurons in input layer * @param outputNeuronsCount * number of neurons in output layer * @param neuronProperties * neuron properties */ private void createNetwork(int inputNeuronsCount, int outputNeuronsCount, NeuronProperties neuronProperties) { // set network type this.setNetworkType(NeuralNetworkType.BAM); // create input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties); // add input layer to network this.addLayer(inputLayer); // create output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, neuronProperties); // add output layer to network this.addLayer(outputLayer); // create full connectivity from in to out layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // create full connectivity from out to in layer ConnectionFactory.fullConnect(outputLayer, inputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set Hebbian learning rule for this network this.setLearningRule(new BinaryHebbianLearning()); }
Example #12
Source File: Perceptron.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates perceptron architecture with specified number of neurons in input * and output layer, specified transfer function * * @param inputNeuronsCount * number of neurons in input layer * @param outputNeuronsCount * number of neurons in output layer * @param transferFunctionType * neuron transfer function type */ private void createNetwork(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType) { // set network type this.setNetworkType(NeuralNetworkType.PERCEPTRON); Layer inputLayer = new InputLayer(inputNeuronsCount); this.addLayer(inputLayer); NeuronProperties outputNeuronProperties = new NeuronProperties(); outputNeuronProperties.setProperty("neuronType", ThresholdNeuron.class); outputNeuronProperties.setProperty("thresh", new Double(Math.abs(Math.random()))); outputNeuronProperties.setProperty("transferFunction", transferFunctionType); // for sigmoid and tanh transfer functions set slope propery outputNeuronProperties.setProperty("transferFunction.slope", new Double(1)); // createLayer output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, outputNeuronProperties); this.addLayer(outputLayer); // create full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); this.setLearningRule(new BinaryDeltaRule()); // set appropriate learning rule for this network // if (transferFunctionType == TransferFunctionType.STEP) { // this.setLearningRule(new BinaryDeltaRule(this)); // } else if (transferFunctionType == TransferFunctionType.SIGMOID) { // this.setLearningRule(new SigmoidDeltaRule(this)); // } else if (transferFunctionType == TransferFunctionType.TANH) { // this.setLearningRule(new SigmoidDeltaRule(this)); // } else { // this.setLearningRule(new PerceptronLearning(this)); // } }
Example #13
Source File: UnsupervisedHebbianNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates an instance of Unsuervised Hebian net with specified number * of neurons in input layer and output layer, and transfer function * * @param inputNeuronsNum * number of neurons in input layer * @param outputNeuronsNum * number of neurons in output layer * @param transferFunctionType * transfer function type */ private void createNetwork(int inputNeuronsNum, int outputNeuronsNum, TransferFunctionType transferFunctionType) { // init neuron properties NeuronProperties neuronProperties = new NeuronProperties(); // neuronProperties.setProperty("bias", new Double(-Math // .abs(Math.random() - 0.5))); // Hebbian network cann not work // without bias neuronProperties.setProperty("transferFunction", transferFunctionType); neuronProperties.setProperty("transferFunction.slope", new Double(1)); // set network type code this.setNetworkType(NeuralNetworkType.UNSUPERVISED_HEBBIAN_NET); // createLayer input layer Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum, neuronProperties); this.addLayer(inputLayer); // createLayer output layer Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum, neuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // set appropriate learning rule for this network this.setLearningRule(new UnsupervisedHebbianLearning()); //this.setLearningRule(new OjaLearning(this)); }
Example #14
Source File: Adaline.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Creates adaline network architecture with specified number of input neurons * * @param inputNeuronsCount * number of neurons in input layer */ private void createNetwork(int inputNeuronsCount) { // set network type code this.setNetworkType(NeuralNetworkType.ADALINE); // create input layer neuron settings for this network NeuronProperties inNeuronProperties = new NeuronProperties(); inNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); // createLayer input layer with specified number of neurons //Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, inNeuronProperties); Layer inputLayer = new InputLayer(inputNeuronsCount); inputLayer.addNeuron(new BiasNeuron()); // add bias neuron (always 1, and it will act as bias input for output neuron) this.addLayer(inputLayer); // create output layer neuron settings for this network NeuronProperties outNeuronProperties = new NeuronProperties(); outNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); // was RAMP // outNeuronProperties.setProperty("transferFunction.slope", new Double(1)); // outNeuronProperties.setProperty("transferFunction.yHigh", new Double(1)); // outNeuronProperties.setProperty("transferFunction.xHigh", new Double(1)); // outNeuronProperties.setProperty("transferFunction.yLow", new Double(-1)); // outNeuronProperties.setProperty("transferFunction.xLow", new Double(-1)); // createLayer output layer (only one neuron) Layer outputLayer = LayerFactory.createLayer(1, outNeuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for network NeuralNetworkFactory.setDefaultIO(this); // set LMS learning rule for this network this.setLearningRule(new LMS()); }
Example #15
Source File: MultiLayerPerceptron.java From NeurophFramework with Apache License 2.0 | 4 votes |
/** * Creates MultiLayerPerceptron Network architecture - fully connected * feed forward with specified number of neurons in each layer * * @param neuronsInLayers collection of neuron numbers in getLayersIterator * @param neuronProperties neuron properties */ private void createNetwork(List<Integer> neuronsInLayers, NeuronProperties neuronProperties) { // set network type this.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON); // create input layer NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class); Layer layer = LayerFactory.createLayer(neuronsInLayers.get(0), inputNeuronProperties); boolean useBias = true; // use bias neurons by default if (neuronProperties.hasProperty("useBias")) { useBias = (Boolean) neuronProperties.getProperty("useBias"); } if (useBias) { layer.addNeuron(new BiasNeuron()); } this.addLayer(layer); // create layers Layer prevLayer = layer; //for(Integer neuronsNum : neuronsInLayers) for (int layerIdx = 1; layerIdx < neuronsInLayers.size(); layerIdx++) { Integer neuronsNum = neuronsInLayers.get(layerIdx); // createLayer layer layer = LayerFactory.createLayer(neuronsNum, neuronProperties); if (useBias && (layerIdx < (neuronsInLayers.size() - 1))) { layer.addNeuron(new BiasNeuron()); } // add created layer to network this.addLayer(layer); // createLayer full connectivity between previous and this layer if (prevLayer != null) { ConnectionFactory.fullConnect(prevLayer, layer); } prevLayer = layer; } // set input and output cells for network NeuralNetworkFactory.setDefaultIO(this); // set learnng rule // this.setLearningRule(new BackPropagation()); this.setLearningRule(new MomentumBackpropagation()); // this.setLearningRule(new DynamicBackPropagation()); this.randomizeWeights(new RangeRandomizer(-0.7, 0.7)); }
Example #16
Source File: RecommenderNetwork.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void createDemoNetwork() { int productsCount = 20; int typesCount = 3; int brandsCount = 3; int priceCount = 3; int promoCount = 3; this.setNetworkType(NeuralNetworkType.RECOMMENDER); //this.getLayers().clear(); // init neuron settings for this type of network NeuronProperties neuronProperties = new NeuronProperties(); neuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP); // for sigmoid and tanh transfer functions neuronProperties.setProperty("transferFunction.slope", new Double(1)); // create input layer Layer inputLayer = LayerFactory.createLayer(productsCount, neuronProperties); this.addLayer(inputLayer); createProductLabels(inputLayer); // create product types layer Layer typeLayer = LayerFactory.createLayer(typesCount, neuronProperties); createTypeLabels(typeLayer); this.addLayer(typeLayer); // create brands layer Layer brandLayer = LayerFactory.createLayer(brandsCount, neuronProperties); createBrandLabels(brandLayer); this.addLayer(brandLayer); // create price layer Layer priceLayer = LayerFactory.createLayer(priceCount, neuronProperties); createPriceLabels(priceLayer); this.addLayer(priceLayer); // create price layer Layer promoLayer = LayerFactory.createLayer(promoCount, neuronProperties); createPromoLabels(promoLayer); this.addLayer(promoLayer); // create output layer Layer outputLayer = LayerFactory.createLayer(productsCount, neuronProperties); this.addLayer(outputLayer); createProductLabels(outputLayer); createTypeConnections(); createBrandConnections(); createPriceConnections(); createPromoConnections(); // create reccurent self connections in output layer for(Neuron neuron : this.getLayerAt(outputLayerIdx).getNeurons()) { neuron.addInputConnection(neuron, 1); } // set input and output cells for this network NeuralNetworkFactory.setDefaultIO(this); // dont learn the self connections // moze cak i posle svakog prolaza da se primenjuje hebbianovo pravilo a ne samo nakon kupovine // napravi vise varijanti // ako kupuje onda moze da se primenjje winner takes all hebbian learning this.setLearningRule(new UnsupervisedHebbianLearning()); }
Example #17
Source File: NeuralNetwork.java From NeurophFramework with Apache License 2.0 | 2 votes |
/** * Returns type of this network * * @return network type */ public NeuralNetworkType getNetworkType() { return type; }
Example #18
Source File: NeuralNetwork.java From NeurophFramework with Apache License 2.0 | 2 votes |
/** * Sets type for this network * * @param type network type */ public void setNetworkType(NeuralNetworkType type) { this.type = type; }