edu.stanford.nlp.classify.Classifier Java Examples
The following examples show how to use
edu.stanford.nlp.classify.Classifier.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: DefaultKBPStatisticalExtractor.java From InformationExtraction with GNU General Public License v3.0 | 6 votes |
public static IntelKBPRelationExtractor loadStatisticalExtractor() throws IOException, ClassNotFoundException { log.info("Loading KBP classifier from " + model); Object object = IOUtils.readObjectFromURLOrClasspathOrFileSystem(model); IntelKBPRelationExtractor statisticalExtractor; if (object instanceof LinearClassifier) { //noinspection unchecked statisticalExtractor = new DefaultKBPStatisticalExtractor((Classifier<String, String>) object); } else if (object instanceof DefaultKBPStatisticalExtractor) { statisticalExtractor = (DefaultKBPStatisticalExtractor) object; } else if (object instanceof edu.stanford.nlp.ie.KBPStatisticalExtractor) { edu.stanford.nlp.ie.KBPStatisticalExtractor kbp = (edu.stanford.nlp.ie.KBPStatisticalExtractor) object; statisticalExtractor = new DefaultKBPStatisticalExtractor(kbp.classifier); } else { throw new ClassCastException(object.getClass() + " cannot be cast into a " + DefaultKBPStatisticalExtractor.class); } return statisticalExtractor; }
Example #2
Source File: IntelKBPStatisticalExtractor.java From InformationExtraction with GNU General Public License v3.0 | 6 votes |
public static IntelKBPRelationExtractor loadStatisticalExtractor() throws IOException, ClassNotFoundException { log.info("Loading KBP classifier from " + MODEL); Object object = edu.stanford.nlp.io.IOUtils.readObjectFromURLOrClasspathOrFileSystem(MODEL); IntelKBPRelationExtractor statisticalExtractor; if (object instanceof LinearClassifier) { //noinspection unchecked statisticalExtractor = new IntelKBPStatisticalExtractor((Classifier<String, String>) object); } else if (object instanceof IntelKBPStatisticalExtractor) { statisticalExtractor = (IntelKBPStatisticalExtractor) object; } else if (object instanceof edu.stanford.nlp.ie.KBPStatisticalExtractor) { edu.stanford.nlp.ie.KBPStatisticalExtractor kbp = (edu.stanford.nlp.ie.KBPStatisticalExtractor) object; statisticalExtractor = new IntelKBPStatisticalExtractor(kbp.classifier); } else { throw new ClassCastException(object.getClass() + " cannot be cast into a " + IntelKBPStatisticalExtractor.class); } return statisticalExtractor; }
Example #3
Source File: StanfordClassifier.java From Java-Data-Science-Cookbook with MIT License | 5 votes |
public static void main(String[] args) throws Exception { ColumnDataClassifier columnDataClassifier = new ColumnDataClassifier("examples/cheese2007.prop"); Classifier<String,String> classifier = columnDataClassifier.makeClassifier(columnDataClassifier.readTrainingExamples("examples/cheeseDisease.train")); for (String line : ObjectBank.getLineIterator("examples/cheeseDisease.test", "utf-8")) { Datum<String,String> d = columnDataClassifier.makeDatumFromLine(line); System.out.println(line + " ==> " + classifier.classOf(d)); } }
Example #4
Source File: IntelKBPEnsembleExtractor.java From InformationExtraction with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws IOException, ClassNotFoundException { RedwoodConfiguration.standard().apply(); // Disable SLF4J crap. ArgumentParser.fillOptions(edu.stanford.nlp.ie.KBPEnsembleExtractor.class, args); Object object = IOUtils.readObjectFromURLOrClasspathOrFileSystem(STATISTICAL_MODEL); IntelKBPRelationExtractor statisticalExtractor; if (object instanceof LinearClassifier) { //noinspection unchecked statisticalExtractor = new IntelKBPStatisticalExtractor((Classifier<String, String>) object); } else if (object instanceof IntelKBPStatisticalExtractor) { statisticalExtractor = (IntelKBPStatisticalExtractor) object; } else { throw new ClassCastException(object.getClass() + " cannot be cast into a " + IntelKBPStatisticalExtractor.class); } logger.info("Read statistical model from " + STATISTICAL_MODEL); IntelKBPRelationExtractor extractor = new IntelKBPEnsembleExtractor( new IntelKBPTokensregexExtractor(TOKENSREGEX_DIR), new IntelKBPSemgrexExtractor(SEMGREX_DIR), statisticalExtractor ); List<Pair<KBPInput, String>> testExamples = DatasetUtils.readDataset(TEST_FILE); extractor.computeAccuracy(testExamples.stream(), PREDICTIONS.map(x -> { try { return "stdout".equalsIgnoreCase(x) ? System.out : new PrintStream(new FileOutputStream(x)); } catch (IOException e) { throw new RuntimeIOException(e); } })); }
Example #5
Source File: IntelKBPStatisticalExtractor.java From InformationExtraction with GNU General Public License v3.0 | 5 votes |
public static void trainModel() throws IOException { forceTrack("Training data"); List<Pair<KBPInput, String>> trainExamples = DatasetUtils.readDataset(TRAIN_FILE); log.info("Read " + trainExamples.size() + " examples"); log.info("" + trainExamples.stream().map(Pair::second).filter(NO_RELATION::equals).count() + " are " + NO_RELATION); endTrack("Training data"); // Featurize + create the dataset forceTrack("Creating dataset"); RVFDataset<String, String> dataset = new RVFDataset<>(); final AtomicInteger i = new AtomicInteger(0); long beginTime = System.currentTimeMillis(); trainExamples.stream().parallel().forEach(example -> { if (i.incrementAndGet() % 1000 == 0) { log.info("[" + Redwood.formatTimeDifference(System.currentTimeMillis() - beginTime) + "] Featurized " + i.get() + " / " + trainExamples.size() + " examples"); } Counter<String> features = features(example.first); // This takes a while per example synchronized (dataset) { dataset.add(new RVFDatum<>(features, example.second)); } }); trainExamples.clear(); // Free up some memory endTrack("Creating dataset"); // Train the classifier log.info("Training classifier:"); Classifier<String, String> classifier = trainMultinomialClassifier(dataset, FEATURE_THRESHOLD, SIGMA); dataset.clear(); // Free up some memory // Save the classifier IOUtils.writeObjectToFile(new IntelKBPStatisticalExtractor(classifier), MODEL_FILE); }
Example #6
Source File: KBPEnsembleExtractor.java From InformationExtraction with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws IOException, ClassNotFoundException { RedwoodConfiguration.standard().apply(); // Disable SLF4J crap. ArgumentParser.fillOptions(edu.stanford.nlp.ie.KBPEnsembleExtractor.class, args); Object object = IOUtils.readObjectFromURLOrClasspathOrFileSystem(STATISTICAL_MODEL); edu.stanford.nlp.ie.KBPRelationExtractor statisticalExtractor; if (object instanceof LinearClassifier) { //noinspection unchecked statisticalExtractor = new IntelKBPStatisticalExtractor((Classifier<String, String>) object); } else if (object instanceof IntelKBPStatisticalExtractor) { statisticalExtractor = (IntelKBPStatisticalExtractor) object; } else { throw new ClassCastException(object.getClass() + " cannot be cast into a " + IntelKBPStatisticalExtractor.class); } logger.info("Read statistical model from " + STATISTICAL_MODEL); edu.stanford.nlp.ie.KBPRelationExtractor extractor = new edu.stanford.nlp.ie.KBPEnsembleExtractor( new IntelKBPTokensregexExtractor(TOKENSREGEX_DIR), new IntelKBPSemgrexExtractor(SEMGREX_DIR), statisticalExtractor ); List<Pair<KBPInput, String>> testExamples = KBPRelationExtractor.readDataset(TEST_FILE); extractor.computeAccuracy(testExamples.stream(), PREDICTIONS.map(x -> { try { return "stdout".equalsIgnoreCase(x) ? System.out : new PrintStream(new FileOutputStream(x)); } catch (IOException e) { throw new RuntimeIOException(e); } })); }
Example #7
Source File: DefaultKBPStatisticalExtractor.java From InformationExtraction with GNU General Public License v3.0 | 2 votes |
/** * Create a new KBP relation extractor, from the given implementing classifier. * * @param classifier The implementing classifier. */ public DefaultKBPStatisticalExtractor(Classifier<String, String> classifier) { super(classifier); }
Example #8
Source File: IntelKBPStatisticalExtractor.java From InformationExtraction with GNU General Public License v3.0 | 2 votes |
/** * Create a new KBP relation extractor, from the given implementing classifier. * * @param classifier The implementing classifier. */ public IntelKBPStatisticalExtractor(Classifier<String, String> classifier) { super(classifier); }