edu.stanford.nlp.util.logging.Redwood Java Examples
The following examples show how to use
edu.stanford.nlp.util.logging.Redwood.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: IntelKBPStatisticalExtractor.java From InformationExtraction with GNU General Public License v3.0 | 5 votes |
public static void trainModel() throws IOException { forceTrack("Training data"); List<Pair<KBPInput, String>> trainExamples = DatasetUtils.readDataset(TRAIN_FILE); log.info("Read " + trainExamples.size() + " examples"); log.info("" + trainExamples.stream().map(Pair::second).filter(NO_RELATION::equals).count() + " are " + NO_RELATION); endTrack("Training data"); // Featurize + create the dataset forceTrack("Creating dataset"); RVFDataset<String, String> dataset = new RVFDataset<>(); final AtomicInteger i = new AtomicInteger(0); long beginTime = System.currentTimeMillis(); trainExamples.stream().parallel().forEach(example -> { if (i.incrementAndGet() % 1000 == 0) { log.info("[" + Redwood.formatTimeDifference(System.currentTimeMillis() - beginTime) + "] Featurized " + i.get() + " / " + trainExamples.size() + " examples"); } Counter<String> features = features(example.first); // This takes a while per example synchronized (dataset) { dataset.add(new RVFDatum<>(features, example.second)); } }); trainExamples.clear(); // Free up some memory endTrack("Creating dataset"); // Train the classifier log.info("Training classifier:"); Classifier<String, String> classifier = trainMultinomialClassifier(dataset, FEATURE_THRESHOLD, SIGMA); dataset.clear(); // Free up some memory // Save the classifier IOUtils.writeObjectToFile(new IntelKBPStatisticalExtractor(classifier), MODEL_FILE); }