org.apache.commons.math.optimization.general.GaussNewtonOptimizer Java Examples
The following examples show how to use
org.apache.commons.math.optimization.general.GaussNewtonOptimizer.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #2
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #3
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #4
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #5
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #6
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #7
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #8
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = MathUserException.class) public void testNoOptimum() { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(100, new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) { throw new MathUserException(); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #9
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = MathUserException.class) public void testNoOptimum() { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(100, new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) { throw new MathUserException(); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #10
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = ConvergenceException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxEvaluations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #11
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #12
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #13
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = MathUserException.class) public void testNoOptimum() { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(100, new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) { throw new MathUserException(); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #14
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #15
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #16
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected = OptimizationException.class) public void testNoOptimum() throws FunctionEvaluationException, OptimizationException { DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setMaxIterations(100); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); optimizer.optimize(new DifferentiableMultivariateVectorialFunction() { public MultivariateMatrixFunction jacobian() { return null; } public double[] value(double[] point) throws FunctionEvaluationException { throw new FunctionEvaluationException(point[0]); } }, new double[] { 2 }, new double[] { 1 }, new double[] { 0 }); }
Example #17
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #18
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #19
Source File: MultiStartDifferentiableMultivariateVectorialOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testTrivial() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); DifferentiableMultivariateVectorialOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartDifferentiableMultivariateVectorialOptimizer optimizer = new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer, 10, generator); optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6)); // no optima before first optimization attempt try { optimizer.getOptima(); Assert.fail("an exception should have been thrown"); } catch (MathIllegalStateException ise) { // expected } VectorialPointValuePair optimum = optimizer.optimize(100, problem, problem.target, new double[] { 1 }, new double[] { 0 }); Assert.assertEquals(1.5, optimum.getPoint()[0], 1.0e-10); Assert.assertEquals(3.0, optimum.getValue()[0], 1.0e-10); VectorialPointValuePair[] optima = optimizer.getOptima(); Assert.assertEquals(10, optima.length); for (int i = 0; i < optima.length; ++i) { Assert.assertEquals(1.5, optima[i].getPoint()[0], 1.0e-10); Assert.assertEquals(3.0, optima[i].getValue()[0], 1.0e-10); } Assert.assertTrue(optimizer.getEvaluations() > 20); Assert.assertTrue(optimizer.getEvaluations() < 50); Assert.assertEquals(100, optimizer.getMaxEvaluations()); }
Example #20
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #21
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #22
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #23
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #24
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #25
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #26
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #27
Source File: RegressionInfo.java From mzmine2 with GNU General Public License v2.0 | 5 votes |
private PolynomialFunction getPolynomialFunction() { Collections.sort(data, new RTs()); PolynomialFitter fitter = new PolynomialFitter(3, new GaussNewtonOptimizer(true)); for (RTs rt : data) { fitter.addObservedPoint(1, rt.RT, rt.RT2); } try { return fitter.fit(); } catch (Exception ex) { return null; } }
Example #28
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }
Example #29
Source File: RegressionInfo.java From mzmine3 with GNU General Public License v2.0 | 5 votes |
private PolynomialFunction getPolynomialFunction() { Collections.sort(data, new RTs()); PolynomialFitter fitter = new PolynomialFitter(3, new GaussNewtonOptimizer(true)); for (RTs rt : data) { fitter.addObservedPoint(1, rt.RT, rt.RT2); } try { return fitter.fit(); } catch (Exception ex) { return null; } }
Example #30
Source File: PolynomialFitterTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testRedundantUnsolvable() { // Gauss-Newton should not be able to solve redundant information DifferentiableMultivariateVectorialOptimizer optimizer = new GaussNewtonOptimizer(true); checkUnsolvableProblem(optimizer, false); }