org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction Java Examples
The following examples show how to use
org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: WindowedStream.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggFunction The aggregate function that is used for incremental aggregation. * @param windowFunction The window function. * * @return The data stream that is the result of applying the window function to the window. * * @param <ACC> The type of the AggregateFunction's accumulator * @param <V> The type of AggregateFunction's result, and the WindowFunction's input * @param <R> The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public <ACC, V, R> SingleOutputStreamOperator<R> aggregate( AggregateFunction<T, ACC, V> aggFunction, ProcessWindowFunction<V, R, K, W> windowFunction) { checkNotNull(aggFunction, "aggFunction"); checkNotNull(windowFunction, "windowFunction"); TypeInformation<ACC> accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType( aggFunction, input.getType(), null, false); TypeInformation<V> aggResultType = TypeExtractor.getAggregateFunctionReturnType( aggFunction, input.getType(), null, false); TypeInformation<R> resultType = getProcessWindowFunctionReturnType(windowFunction, aggResultType, null); return aggregate(aggFunction, windowFunction, accumulatorType, aggResultType, resultType); }
Example #2
Source File: WindowedStream.java From flink with Apache License 2.0 | 6 votes |
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggFunction The aggregate function that is used for incremental aggregation. * @param windowFunction The window function. * * @return The data stream that is the result of applying the window function to the window. * * @param <ACC> The type of the AggregateFunction's accumulator * @param <V> The type of AggregateFunction's result, and the WindowFunction's input * @param <R> The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public <ACC, V, R> SingleOutputStreamOperator<R> aggregate( AggregateFunction<T, ACC, V> aggFunction, ProcessWindowFunction<V, R, K, W> windowFunction) { checkNotNull(aggFunction, "aggFunction"); checkNotNull(windowFunction, "windowFunction"); TypeInformation<ACC> accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType( aggFunction, input.getType(), null, false); TypeInformation<V> aggResultType = TypeExtractor.getAggregateFunctionReturnType( aggFunction, input.getType(), null, false); TypeInformation<R> resultType = getProcessWindowFunctionReturnType(windowFunction, aggResultType, null); return aggregate(aggFunction, windowFunction, accumulatorType, aggResultType, resultType); }
Example #3
Source File: StateDescriptorPassingTest.java From Flink-CEPplus with Apache License 2.0 | 6 votes |
@Test public void testProcessWindowState() throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); env.registerTypeWithKryoSerializer(File.class, JavaSerializer.class); DataStream<File> src = env.fromElements(new File("/")); SingleOutputStreamOperator<?> result = src .keyBy(new KeySelector<File, String>() { @Override public String getKey(File value) { return null; } }) .timeWindow(Time.milliseconds(1000)) .process(new ProcessWindowFunction<File, String, String, TimeWindow>() { @Override public void process(String s, Context ctx, Iterable<File> input, Collector<String> out) {} }); validateListStateDescriptorConfigured(result); }
Example #4
Source File: StateDescriptorPassingTest.java From flink with Apache License 2.0 | 6 votes |
@Test public void testProcessWindowState() throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); env.registerTypeWithKryoSerializer(File.class, JavaSerializer.class); DataStream<File> src = env.fromElements(new File("/")); SingleOutputStreamOperator<?> result = src .keyBy(new KeySelector<File, String>() { @Override public String getKey(File value) { return null; } }) .timeWindow(Time.milliseconds(1000)) .process(new ProcessWindowFunction<File, String, String, TimeWindow>() { @Override public void process(String s, Context ctx, Iterable<File> input, Collector<String> out) {} }); validateListStateDescriptorConfigured(result); }
Example #5
Source File: WindowedStream.java From flink with Apache License 2.0 | 6 votes |
/** * Applies the given window function to each window. The window function is called for each * evaluation of the window for each key individually. The output of the window function is * interpreted as a regular non-windowed stream. * * <p>Arriving data is incrementally aggregated using the given aggregate function. This means * that the window function typically has only a single value to process when called. * * @param aggFunction The aggregate function that is used for incremental aggregation. * @param windowFunction The window function. * * @return The data stream that is the result of applying the window function to the window. * * @param <ACC> The type of the AggregateFunction's accumulator * @param <V> The type of AggregateFunction's result, and the WindowFunction's input * @param <R> The type of the elements in the resulting stream, equal to the * WindowFunction's result type */ @PublicEvolving public <ACC, V, R> SingleOutputStreamOperator<R> aggregate( AggregateFunction<T, ACC, V> aggFunction, ProcessWindowFunction<V, R, K, W> windowFunction) { checkNotNull(aggFunction, "aggFunction"); checkNotNull(windowFunction, "windowFunction"); TypeInformation<ACC> accumulatorType = TypeExtractor.getAggregateFunctionAccumulatorType( aggFunction, input.getType(), null, false); TypeInformation<V> aggResultType = TypeExtractor.getAggregateFunctionReturnType( aggFunction, input.getType(), null, false); TypeInformation<R> resultType = getProcessWindowFunctionReturnType(windowFunction, aggResultType, null); return aggregate(aggFunction, windowFunction, accumulatorType, aggResultType, resultType); }
Example #6
Source File: StateDescriptorPassingTest.java From flink with Apache License 2.0 | 6 votes |
@Test public void testProcessWindowState() throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); env.registerTypeWithKryoSerializer(File.class, JavaSerializer.class); DataStream<File> src = env.fromElements(new File("/")); SingleOutputStreamOperator<?> result = src .keyBy(new KeySelector<File, String>() { @Override public String getKey(File value) { return null; } }) .timeWindow(Time.milliseconds(1000)) .process(new ProcessWindowFunction<File, String, String, TimeWindow>() { @Override public void process(String s, Context ctx, Iterable<File> input, Collector<String> out) {} }); validateListStateDescriptorConfigured(result); }
Example #7
Source File: InternalIterableProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void process(KEY key, final W window, final InternalWindowContext context, Iterable<IN> input, Collector<OUT> out) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.process(key, ctx, input, out); }
Example #8
Source File: InternalAggregateProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void clear(final W window, final InternalWindowContext context) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<V, R, K, W> wrappedFunction = this.wrappedFunction; wrappedFunction.clear(ctx); }
Example #9
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testReduceWithProcessWindowFunctionProcessingTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple3<String, String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingProcessingTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .reduce(new DummyReducer(), new ProcessWindowFunction<Tuple2<String, Integer>, Tuple3<String, String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String tuple, Context ctx, Iterable<Tuple2<String, Integer>> values, Collector<Tuple3<String, String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : values) { out.collect(new Tuple3<>(in.f0, in.f0, in.f1)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple3<String, String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof ProcessingTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingProcessingTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ReducingStateDescriptor); processElementAndEnsureOutput(operator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #10
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testReduceWithProcesWindowFunctionEventTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DummyReducer reducer = new DummyReducer(); DataStream<Tuple3<String, String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .reduce(reducer, new ProcessWindowFunction<Tuple2<String, Integer>, Tuple3<String, String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple2<String, Integer>> values, Collector<Tuple3<String, String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : values) { out.collect(new Tuple3<>(in.f0, in.f0, in.f1)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple3<String, String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof EventTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ReducingStateDescriptor); processElementAndEnsureOutput(operator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #11
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testProcessProcessingTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple2<String, Integer>> window1 = source .keyBy(new TupleKeySelector()) .window(TumblingProcessingTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .process(new ProcessWindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple2<String, Integer>> values, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : values) { out.collect(in); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window1.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof ProcessingTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingProcessingTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ListStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #12
Source File: InternalIterableProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void clear(final W window, final InternalWindowContext context) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.clear(ctx); }
Example #13
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testFoldWithProcessWindowFunctionEventTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple2<String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .fold(new Tuple3<>("", "", 0), new DummyFolder(), new ProcessWindowFunction<Tuple3<String, String, Integer>, Tuple2<String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple3<String, String, Integer>> values, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple3<String, String, Integer> in : values) { out.collect(new Tuple2<>(in.f0, in.f2)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof EventTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof FoldingStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #14
Source File: InternalSingleValueProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void clear(final W window, final InternalWindowContext context) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.clear(ctx); }
Example #15
Source File: InternalSingleValueProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void process(KEY key, final W window, final InternalWindowContext context, IN input, Collector<OUT> out) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.process(key, ctx, Collections.singletonList(input), out); }
Example #16
Source File: InternalSingleValueProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void process(KEY key, final W window, final InternalWindowContext context, IN input, Collector<OUT> out) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.process(key, ctx, Collections.singletonList(input), out); }
Example #17
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testReduceWithEvictorAndProcessFunction() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DummyReducer reducer = new DummyReducer(); DataStream<Tuple2<String, Integer>> window1 = source .keyBy(0) .window(SlidingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS), Time.of(100, TimeUnit.MILLISECONDS))) .evictor(CountEvictor.of(100)) .reduce( reducer, new ProcessWindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() { @Override public void process( Tuple tuple, Context context, Iterable<Tuple2<String, Integer>> elements, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : elements) { out.collect(in); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window1.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof EvictingWindowOperator); EvictingWindowOperator<String, Tuple2<String, Integer>, ?, ?> winOperator = (EvictingWindowOperator<String, Tuple2<String, Integer>, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof EventTimeTrigger); Assert.assertTrue(winOperator.getEvictor() instanceof CountEvictor); Assert.assertTrue(winOperator.getWindowAssigner() instanceof SlidingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ListStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #18
Source File: WindowedStream.java From flink with Apache License 2.0 | 5 votes |
private static <IN, OUT, KEY> TypeInformation<OUT> getProcessWindowFunctionReturnType( ProcessWindowFunction<IN, OUT, KEY, ?> function, TypeInformation<IN> inType, String functionName) { return TypeExtractor.getUnaryOperatorReturnType( function, ProcessWindowFunction.class, 0, 1, TypeExtractor.NO_INDEX, inType, functionName, false); }
Example #19
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testFoldWithProcessWindowFunctionProcessingTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple2<String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingProcessingTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .fold(new Tuple3<>("", "empty", 0), new DummyFolder(), new ProcessWindowFunction<Tuple3<String, String, Integer>, Tuple2<String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple3<String, String, Integer>> values, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple3<String, String, Integer> in : values) { out.collect(new Tuple2<>(in.f0, in.f2)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof ProcessingTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingProcessingTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof FoldingStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #20
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testFoldWithProcessWindowFunctionProcessingTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple2<String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingProcessingTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .fold(new Tuple3<>("", "empty", 0), new DummyFolder(), new ProcessWindowFunction<Tuple3<String, String, Integer>, Tuple2<String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple3<String, String, Integer>> values, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple3<String, String, Integer> in : values) { out.collect(new Tuple2<>(in.f0, in.f2)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof ProcessingTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingProcessingTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof FoldingStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #21
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testReduceWithEvictorAndProcessFunction() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DummyReducer reducer = new DummyReducer(); DataStream<Tuple2<String, Integer>> window1 = source .keyBy(0) .window(SlidingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS), Time.of(100, TimeUnit.MILLISECONDS))) .evictor(CountEvictor.of(100)) .reduce( reducer, new ProcessWindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() { @Override public void process( Tuple tuple, Context context, Iterable<Tuple2<String, Integer>> elements, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : elements) { out.collect(in); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window1.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof EvictingWindowOperator); EvictingWindowOperator<String, Tuple2<String, Integer>, ?, ?> winOperator = (EvictingWindowOperator<String, Tuple2<String, Integer>, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof EventTimeTrigger); Assert.assertTrue(winOperator.getEvictor() instanceof CountEvictor); Assert.assertTrue(winOperator.getWindowAssigner() instanceof SlidingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ListStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #22
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testReduceWithProcessWindowFunctionProcessingTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple3<String, String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingProcessingTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .reduce(new DummyReducer(), new ProcessWindowFunction<Tuple2<String, Integer>, Tuple3<String, String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String tuple, Context ctx, Iterable<Tuple2<String, Integer>> values, Collector<Tuple3<String, String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : values) { out.collect(new Tuple3<>(in.f0, in.f0, in.f1)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple3<String, String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof ProcessingTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingProcessingTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ReducingStateDescriptor); processElementAndEnsureOutput(operator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #23
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testReduceWithProcesWindowFunctionEventTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DummyReducer reducer = new DummyReducer(); DataStream<Tuple3<String, String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .reduce(reducer, new ProcessWindowFunction<Tuple2<String, Integer>, Tuple3<String, String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple2<String, Integer>> values, Collector<Tuple3<String, String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : values) { out.collect(new Tuple3<>(in.f0, in.f0, in.f1)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple3<String, String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple3<String, String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof EventTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ReducingStateDescriptor); processElementAndEnsureOutput(operator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #24
Source File: InternalIterableProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void clear(final W window, final InternalWindowContext context) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.clear(ctx); }
Example #25
Source File: InternalIterableProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void process(KEY key, final W window, final InternalWindowContext context, Iterable<IN> input, Collector<OUT> out) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.process(key, ctx, input, out); }
Example #26
Source File: InternalSingleValueProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void clear(final W window, final InternalWindowContext context) throws Exception { this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<IN, OUT, KEY, W> wrappedFunction = this.wrappedFunction; wrappedFunction.clear(ctx); }
Example #27
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testProcessWithEvictor() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple2<String, Integer>> window1 = source .keyBy(new TupleKeySelector()) .window(TumblingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .trigger(CountTrigger.of(1)) .evictor(TimeEvictor.of(Time.of(100, TimeUnit.MILLISECONDS))) .process(new ProcessWindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple2<String, Integer>> values, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple2<String, Integer> in : values) { out.collect(in); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window1.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof EvictingWindowOperator); EvictingWindowOperator<String, Tuple2<String, Integer>, ?, ?> winOperator = (EvictingWindowOperator<String, Tuple2<String, Integer>, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof CountTrigger); Assert.assertTrue(winOperator.getEvictor() instanceof TimeEvictor); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof ListStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #28
Source File: WindowTranslationTest.java From flink with Apache License 2.0 | 5 votes |
@Test @SuppressWarnings("rawtypes") public void testFoldWithProcessWindowFunctionEventTime() throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime); DataStream<Tuple2<String, Integer>> source = env.fromElements(Tuple2.of("hello", 1), Tuple2.of("hello", 2)); DataStream<Tuple2<String, Integer>> window = source .keyBy(new TupleKeySelector()) .window(TumblingEventTimeWindows.of(Time.of(1, TimeUnit.SECONDS))) .fold(new Tuple3<>("", "", 0), new DummyFolder(), new ProcessWindowFunction<Tuple3<String, String, Integer>, Tuple2<String, Integer>, String, TimeWindow>() { private static final long serialVersionUID = 1L; @Override public void process(String key, Context ctx, Iterable<Tuple3<String, String, Integer>> values, Collector<Tuple2<String, Integer>> out) throws Exception { for (Tuple3<String, String, Integer> in : values) { out.collect(new Tuple2<>(in.f0, in.f2)); } } }); OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>> transform = (OneInputTransformation<Tuple2<String, Integer>, Tuple2<String, Integer>>) window.getTransformation(); OneInputStreamOperator<Tuple2<String, Integer>, Tuple2<String, Integer>> operator = transform.getOperator(); Assert.assertTrue(operator instanceof WindowOperator); WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?> winOperator = (WindowOperator<String, Tuple2<String, Integer>, ?, ?, ?>) operator; Assert.assertTrue(winOperator.getTrigger() instanceof EventTimeTrigger); Assert.assertTrue(winOperator.getWindowAssigner() instanceof TumblingEventTimeWindows); Assert.assertTrue(winOperator.getStateDescriptor() instanceof FoldingStateDescriptor); processElementAndEnsureOutput(winOperator, winOperator.getKeySelector(), BasicTypeInfo.STRING_TYPE_INFO, new Tuple2<>("hello", 1)); }
Example #29
Source File: InternalAggregateProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
@Override public void process(K key, final W window, final InternalWindowContext context, Iterable<T> input, Collector<R> out) throws Exception { ACC acc = aggFunction.createAccumulator(); for (T val : input) { acc = aggFunction.add(val, acc); } this.ctx.window = window; this.ctx.internalContext = context; ProcessWindowFunction<V, R, K, W> wrappedFunction = this.wrappedFunction; wrappedFunction.process(key, ctx, Collections.singletonList(aggFunction.getResult(acc)), out); }
Example #30
Source File: InternalAggregateProcessWindowFunction.java From flink with Apache License 2.0 | 5 votes |
public InternalAggregateProcessWindowFunction( AggregateFunction<T, ACC, V> aggFunction, ProcessWindowFunction<V, R, K, W> windowFunction) { super(windowFunction); this.aggFunction = aggFunction; this.ctx = new InternalProcessWindowContext<>(windowFunction); }