org.deeplearning4j.arbiter.optimize.api.ParameterSpace Java Examples
The following examples show how to use
org.deeplearning4j.arbiter.optimize.api.ParameterSpace.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: TestLayerSpace.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testBatchNorm() { BatchNormalizationSpace sp = new BatchNormalizationSpace.Builder().gamma(1.5) .beta(new ContinuousParameterSpace(2, 3)).lockGammaBeta(true).build(); //Set the parameter numbers... List<ParameterSpace> list = sp.collectLeaves(); int k = 0; for (int j = 0; j < list.size(); j++) { if (list.get(j).numParameters() > 0) { list.get(j).setIndices(k++); } } BatchNormalization bn = sp.getValue(new double[]{0.6}); assertTrue(bn.isLockGammaBeta()); assertEquals(1.5, bn.getGamma(), 0.0); assertEquals(0.6 * (3 - 2) + 2, bn.getBeta(), 1e-4); }
Example #2
Source File: ComputationGraphSpace.java From deeplearning4j with Apache License 2.0 | 6 votes |
protected ComputationGraphSpace(Builder builder) { super(builder); this.earlyStoppingConfiguration = builder.earlyStoppingConfiguration; this.layerSpaces = builder.layerList; this.vertices = builder.vertexList; this.networkInputs = builder.networkInputs; this.networkOutputs = builder.networkOutputs; this.inputTypes = builder.inputTypes; this.trainingWorkspaceMode = builder.trainingWorkspaceMode; this.inferenceWorkspaceMode = builder.inferenceWorkspaceMode; this.validateOutputLayerConfig = builder.validateOutputLayerConfig; //Determine total number of parameters: List<ParameterSpace> list = LeafUtils.getUniqueObjects(collectLeaves()); for (ParameterSpace ps : list) numParameters += ps.numParameters(); }
Example #3
Source File: BaseNetworkSpace.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public String toString() { StringBuilder sb = new StringBuilder(); for (Map.Entry<String, ParameterSpace> e : getNestedSpaces().entrySet()) { sb.append(e.getKey()).append(": ").append(e.getValue()).append("\n"); } int i = 0; for (LayerConf conf : layerSpaces) { sb.append("Layer config ").append(i++).append(": (Number layers:").append(conf.numLayers) .append(", duplicate: ").append(conf.duplicateConfig).append("), ") .append(conf.layerSpace.toString()).append("\n"); } return sb.toString(); }
Example #4
Source File: MultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 6 votes |
protected MultiLayerSpace(Builder builder) { super(builder); this.inputType = builder.inputType; this.inputPreProcessors = builder.inputPreProcessors; this.earlyStoppingConfiguration = builder.earlyStoppingConfiguration; this.layerSpaces = builder.layerSpaces; //Determine total number of parameters: //Collect the leaves, and make sure they are unique. //Note that the *object instances* must be unique - and consequently we don't want to use .equals(), as // this would incorrectly filter out equal range parameter spaces List<ParameterSpace> allLeaves = collectLeaves(); List<ParameterSpace> list = LeafUtils.getUniqueObjects(allLeaves); for (ParameterSpace ps : list) { int n = ps.numParameters(); numParameters += ps.numParameters(); } this.trainingWorkspaceMode = builder.trainingWorkspaceMode; this.inferenceWorkspaceMode = builder.inferenceWorkspaceMode; this.validateOutputLayerConfig = builder.validateOutputLayerConfig; }
Example #5
Source File: LayerSpace.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public List<ParameterSpace> collectLeaves() { //To avoid manually coding EVERY parameter, in every layer: // Do a depth-first search of nested spaces LinkedList<ParameterSpace> stack = new LinkedList<>(); stack.add(this); List<ParameterSpace> out = new ArrayList<>(); while (!stack.isEmpty()) { ParameterSpace next = stack.removeLast(); if (next.isLeaf()) { out.add(next); } else { Map<String, ParameterSpace> m = next.getNestedSpaces(); ParameterSpace[] arr = m.values().toArray(new ParameterSpace[m.size()]); for (int i = arr.length - 1; i >= 0; i--) { stack.add(arr[i]); } } } return out; }
Example #6
Source File: BaseLayerSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected String toString(String delim) { StringBuilder sb = new StringBuilder(); for (Map.Entry<String, ParameterSpace> e : getNestedSpaces().entrySet()) { sb.append(e.getKey()).append(": ").append(e.getValue()).append("\n"); } return sb.toString(); }
Example #7
Source File: BaseNetworkSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public List<ParameterSpace> collectLeaves() { Map<String, ParameterSpace> global = getNestedSpaces(); //Note: Results on previous line does NOT include the LayerSpaces, therefore we need to add these manually... //This is because the type is a list, not a ParameterSpace LinkedList<ParameterSpace> stack = new LinkedList<>(); stack.add(this); for (LayerConf layerConf : layerSpaces) { LayerSpace ls = layerConf.getLayerSpace(); stack.addAll(ls.collectLeaves()); } List<ParameterSpace> out = new ArrayList<>(); while (!stack.isEmpty()) { ParameterSpace next = stack.removeLast(); if (next.isLeaf()) { out.add(next); } else { Map<String, ParameterSpace> m = next.getNestedSpaces(); ParameterSpace[] arr = m.values().toArray(new ParameterSpace[m.size()]); for (int i = arr.length - 1; i >= 0; i--) { stack.add(arr[i]); } } } return out; }
Example #8
Source File: NesterovsSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
public NesterovsSpace(@JsonProperty("learningRate") ParameterSpace<Double> learningRate, @JsonProperty("learningRateSchedule") ParameterSpace<ISchedule> learningRateSchedule, @JsonProperty("momentum") ParameterSpace<Double> momentum, @JsonProperty("momentumSchedule") ParameterSpace<ISchedule> momentumSchedule) { this.learningRate = learningRate; this.learningRateSchedule = learningRateSchedule; this.momentum = momentum; this.momentumSchedule = momentumSchedule; }
Example #9
Source File: SigmoidScheduleSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
public SigmoidScheduleSpace(@NonNull @JsonProperty("scheduleType") ScheduleType scheduleType, @NonNull @JsonProperty("initialValue") ParameterSpace<Double> initialValue, @NonNull @JsonProperty("gamma") ParameterSpace<Double> gamma, @NonNull @JsonProperty("stepSize") ParameterSpace<Integer> stepSize){ this.scheduleType = scheduleType; this.initialValue = initialValue; this.gamma = gamma; this.stepSize = stepSize; }
Example #10
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testDropout2(){ MultiLayerSpace mls = new MultiLayerSpace.Builder().updater(new Sgd(0.005)).seed(12345) .addLayer(new ConvolutionLayerSpace.Builder().nOut(2) .dropOut(new ContinuousParameterSpace(0.4,0.6)) .build()) .addLayer(new DropoutLayerSpace.Builder().dropOut(new ContinuousParameterSpace(0.4,0.6)).build()) .addLayer(new OutputLayerSpace.Builder().activation(Activation.SOFTMAX).nIn(10).nOut(5).build()) .setInputType(InputType.convolutional(28, 28, 1)) .build(); int nParams = mls.numParameters(); List<ParameterSpace> l = LeafUtils.getUniqueObjects(mls.collectLeaves()); int x=0; for( ParameterSpace p : l){ int n = p.numParameters(); int[] arr = new int[n]; for(int i=0; i<arr.length; i++ ){ arr[i] = x++; } p.setIndices(arr); } MultiLayerConfiguration conf = mls.getValue(new double[nParams]).getMultiLayerConfiguration(); }
Example #11
Source File: LeafUtils.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * Count the number of unique parameters in the specified leaf nodes * * @param allLeaves Leaf values to count the parameters fore * @return Number of parameters for all unique objects */ public static int countUniqueParameters(List<ParameterSpace> allLeaves) { List<ParameterSpace> unique = getUniqueObjects(allLeaves); int count = 0; for (ParameterSpace ps : unique) { if (!ps.isLeaf()) { throw new IllegalStateException("Method should only be used with leaf nodes"); } count += ps.numParameters(); } return count; }
Example #12
Source File: NadamSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
public NadamSpace(@JsonProperty("learningRate") ParameterSpace<Double> learningRate, @JsonProperty("learningRateSchedule") ParameterSpace<ISchedule> learningRateSchedule, @JsonProperty("beta1") ParameterSpace<Double> beta1, @JsonProperty("beta2") ParameterSpace<Double> beta2, @JsonProperty("epsilon") ParameterSpace<Double> epsilon){ this.learningRate = learningRate; this.learningRateSchedule = learningRateSchedule; this.beta1 = beta1; this.beta2 = beta2; this.epsilon = epsilon; }
Example #13
Source File: AdaMaxSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
public AdaMaxSpace(@JsonProperty("learningRate") ParameterSpace<Double> learningRate, @JsonProperty("learningRateSchedule") ParameterSpace<ISchedule> learningRateSchedule, @JsonProperty("beta1") ParameterSpace<Double> beta1, @JsonProperty("beta2") ParameterSpace<Double> beta2, @JsonProperty("epsilon") ParameterSpace<Double> epsilon){ this.learningRate = learningRate; this.learningRateSchedule = learningRateSchedule; this.beta1 = beta1; this.beta2 = beta2; this.epsilon = epsilon; }
Example #14
Source File: InverseScheduleSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Map<String, ParameterSpace> getNestedSpaces() { Map<String,ParameterSpace> out = new LinkedHashMap<>(); out.put("initialValue", initialValue); out.put("gamma", gamma); out.put("power", power); return out; }
Example #15
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testDropout(){ MultiLayerSpace mls = new MultiLayerSpace.Builder().updater(new Sgd(0.005)).seed(12345) .addLayer(new ConvolutionLayerSpace.Builder().nOut(2) .dropOut(new ContinuousParameterSpace(0.4,0.6)) .build()) .addLayer(new GlobalPoolingLayerSpace.Builder().dropOut(new ContinuousParameterSpace(0.4,0.6)).build()) .addLayer(new OutputLayerSpace.Builder().activation(Activation.SOFTMAX).nIn(10).nOut(5).build()) .setInputType(InputType.convolutional(28, 28, 1)) .build(); int nParams = mls.numParameters(); List<ParameterSpace> l = LeafUtils.getUniqueObjects(mls.collectLeaves()); int x=0; for( ParameterSpace p : l){ int n = p.numParameters(); int[] arr = new int[n]; for(int i=0; i<arr.length; i++ ){ arr[i] = x++; } p.setIndices(arr); } MultiLayerConfiguration conf = mls.getValue(new double[nParams]).getMultiLayerConfiguration(); }
Example #16
Source File: AdamSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected AdamSpace(@JsonProperty("learningRate") ParameterSpace<Double> learningRate, @JsonProperty("learningRateSchedule") ParameterSpace<ISchedule> learningRateSchedule, @JsonProperty("beta1") ParameterSpace<Double> beta1, @JsonProperty("beta2") ParameterSpace<Double> beta2, @JsonProperty("epsilon") ParameterSpace<Double> epsilon){ this.learningRate = learningRate; this.learningRateSchedule = learningRateSchedule; this.beta1 = beta1; this.beta2 = beta2; this.epsilon = epsilon; }
Example #17
Source File: ExponentialScheduleSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
public ExponentialScheduleSpace(@NonNull @JsonProperty("scheduleType") ScheduleType scheduleType, @NonNull @JsonProperty("initialValue") ParameterSpace<Double> initialValue, @NonNull @JsonProperty("gamma") ParameterSpace<Double> gamma){ this.scheduleType = scheduleType; this.initialValue = initialValue; this.gamma = gamma; }
Example #18
Source File: ExponentialScheduleSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Map<String, ParameterSpace> getNestedSpaces() { Map<String,ParameterSpace> out = new LinkedHashMap<>(); out.put("initialValue", initialValue); out.put("gamma", gamma); return out; }
Example #19
Source File: TestMultiLayerSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testSameRanges() { ParameterSpace<Double> l1Hyperparam = new ContinuousParameterSpace(0.001, 0.1); ParameterSpace<Double> l2Hyperparam = new ContinuousParameterSpace(0.001, 0.1); MultiLayerSpace hyperparameterSpace = new MultiLayerSpace.Builder().addLayer(new DenseLayerSpace.Builder().nIn(10).nOut(10).build()) .l1(l1Hyperparam).l2(l2Hyperparam).build(); CandidateGenerator c = new RandomSearchGenerator(hyperparameterSpace, null); Candidate candidate = c.getCandidate(); }
Example #20
Source File: ComputationGraphSpace.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public List<ParameterSpace> collectLeaves() { List<ParameterSpace> list = super.collectLeaves(); for (LayerConf lc : layerSpaces) { list.addAll(lc.layerSpace.collectLeaves()); } if (inputTypes != null) list.add(inputTypes); return list; }
Example #21
Source File: SgdSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public SgdSpace(ParameterSpace<Double> learningRate) { this(learningRate, null); }
Example #22
Source File: LossLayerSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public Builder iLossFunction(ParameterSpace<ILossFunction> lossFunction) { this.lossFunction = lossFunction; return this; }
Example #23
Source File: BaseLayerSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public T activation(ParameterSpace<Activation> activationFunction) { return activationFn(new ActivationParameterSpaceAdapter(activationFunction)); }
Example #24
Source File: AdaMaxSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public AdaMaxSpace(ParameterSpace<Double> learningRate) { this(learningRate, null, null, null); }
Example #25
Source File: BaseLayerSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public T activationFn(ParameterSpace<IActivation> activationFunction) { this.activationFunction = activationFunction; return (T) this; }
Example #26
Source File: AdaGradSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static AdaGradSpace withLR(ParameterSpace<Double> lr){ return new AdaGradSpace(lr, null); }
Example #27
Source File: NesterovsSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static NesterovsSpace withLRSchedule(ParameterSpace<ISchedule> lrSchedule, ParameterSpace<Double> momentum){ return new NesterovsSpace(null, lrSchedule, momentum, null); }
Example #28
Source File: NesterovsSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static NesterovsSpace withLRSchedule(ParameterSpace<ISchedule> lrSchedule, double momentum){ return new NesterovsSpace(null, lrSchedule, new FixedValue<>(momentum), null); }
Example #29
Source File: NesterovsSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static NesterovsSpace withLR(ParameterSpace<Double> lr, ParameterSpace<Double> momentum){ return new NesterovsSpace(lr, null, momentum, null); }
Example #30
Source File: NesterovsSpace.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static NesterovsSpace withLRSchedule(ParameterSpace<ISchedule> lrSchedule){ return new NesterovsSpace(null, lrSchedule, null, null); }