org.apache.commons.math3.linear.DiagonalMatrix Java Examples
The following examples show how to use
org.apache.commons.math3.linear.DiagonalMatrix.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testTrivial() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1 })) .withStartPoint(new double[] { 0 }); PointVectorValuePair optimum = optimizer.optimize(); Assert.assertEquals(0, optimizer.computeRMS(optimum.getPoint()), 1e-10); Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10); Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10); }
Example #2
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testCircleFittingBadInit() { CircleVectorial circle = new CircleVectorial(); double[][] points = circlePoints; double[] weights = new double[points.length]; final double[] start = {-12, -12}; Arrays.fill(weights, 2); for (int i = 0; i < points.length; ++i) { circle.addPoint(points[i][0], points[i][1]); } Optimum optimum = optimizer.optimize(builder(circle).weight(new DiagonalMatrix(weights)).start(start).build()); Vector2D center = new Vector2D(optimum.getPoint().getEntry(0), optimum.getPoint().getEntry(1)); Assert.assertTrue(optimum.getEvaluations() < 25); Assert.assertEquals(0.043, optimum.getRMS(), 1e-3); Assert.assertEquals(0.292235, circle.getRadius(center), 1e-6); Assert.assertEquals(-0.151738, center.getX(), 1e-6); Assert.assertEquals(0.2075001, center.getY(), 1e-6); }
Example #3
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testInconsistentEquations() { LinearProblem problem = new LinearProblem(new double[][] { { 1, 1 }, { 1, -1 }, { 1, 3 } }, new double[] { 3, 1, 4 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 1, 1 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertTrue(optimizer.computeRMS(optimum) > 0.1); }
Example #4
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testInconsistentSizes2() { try { LinearProblem problem = new LinearProblem(new double[][]{{1, 0}, {0, 1}}, new double[]{-1, 1}); Optimum optimum = optimizer.optimize(problem.getBuilder().build()); Assert.assertEquals(0, optimum.getRMS(), TOl); assertEquals(TOl, optimum.getPoint(), -1, 1); //TODO move to builder test optimizer.optimize( problem.getBuilder() .target(new double[]{1}) .weight(new DiagonalMatrix(new double[]{1})) .build() ); fail(optimizer); } catch (DimensionMismatchException e) { //expected } }
Example #5
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testTrivial() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1 })) .withStartPoint(new double[] { 0 }); PointVectorValuePair optimum = optimizer.optimize(); Assert.assertEquals(0, optimizer.computeRMS(optimum.getPoint()), 1e-10); Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10); Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10); }
Example #6
Source File: GaussNewtonOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected=TooManyEvaluationsException.class) public void testMaxEvaluations() throws Exception { CircleVectorial circle = new CircleVectorial(); circle.addPoint( 30.0, 68.0); circle.addPoint( 50.0, -6.0); circle.addPoint(110.0, -20.0); circle.addPoint( 35.0, 15.0); circle.addPoint( 45.0, 97.0); GaussNewtonOptimizer optimizer = createOptimizer() .withConvergenceChecker(new SimpleVectorValueChecker(1e-30, 1e-30)) .withMaxIterations(Integer.MAX_VALUE) .withMaxEvaluations(100) .withModelAndJacobian(circle.getModelFunction(), circle.getModelFunctionJacobian()) .withTarget(new double[] { 0, 0, 0, 0, 0 }) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1, 1, 1 })) .withStartPoint(new double[] { 98.680, 47.345 }); optimizer.optimize(); }
Example #7
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected=ConvergenceException.class) public void testNonInvertible() throws Exception { LinearProblem problem = new LinearProblem(new double[][] { { 1, 2, -3 }, { 2, 1, 3 }, { -3, 0, -9 } }, new double[] { 1, 1, 1 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 0, 0, 0 }); optimizer.optimize(); }
Example #8
Source File: AbstractLeastSquaresOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testComputeRMS() throws IOException { final StatisticalReferenceDataset dataset = StatisticalReferenceDatasetFactory.createKirby2(); final double[] a = dataset.getParameters(); final double[] y = dataset.getData()[1]; final double[] w = new double[y.length]; Arrays.fill(w, 1d); StatisticalReferenceDataset.LeastSquaresProblem problem = dataset.getLeastSquaresProblem(); final LevenbergMarquardtOptimizer optim = LevenbergMarquardtOptimizer.create() .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(y) .withWeight(new DiagonalMatrix(w)) .withStartPoint(a); final double expected = FastMath.sqrt(dataset.getResidualSumOfSquares() / dataset.getNumObservations()); final double actual = optim.computeRMS(optim.getStart()); Assert.assertEquals(dataset.getName(), expected, actual, 1e-11 * expected); }
Example #9
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testQRColumnsPermutation() { LinearProblem problem = new LinearProblem(new double[][] { { 1, -1 }, { 0, 2 }, { 1, -2 } }, new double[] { 4, 6, 1 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 0, 0 }); PointVectorValuePair optimum = optimizer.optimize(); Assert.assertEquals(0, optimizer.computeRMS(optimum.getPoint()), 1e-10); Assert.assertEquals(7, optimum.getPoint()[0], 1e-10); Assert.assertEquals(3, optimum.getPoint()[1], 1e-10); Assert.assertEquals(4, optimum.getValue()[0], 1e-10); Assert.assertEquals(6, optimum.getValue()[1], 1e-10); Assert.assertEquals(1, optimum.getValue()[2], 1e-10); }
Example #10
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testInconsistentSizes1() { try { LinearProblem problem = new LinearProblem(new double[][]{{1, 0}, {0, 1}}, new double[]{-1, 1}); //TODO why is this part here? hasn't it been tested already? Optimum optimum = optimizer.optimize(problem.getBuilder().build()); Assert.assertEquals(0, optimum.getRMS(), TOl); assertEquals(TOl, optimum.getPoint(), -1, 1); //TODO move to builder test optimizer.optimize( problem.getBuilder().weight(new DiagonalMatrix(new double[]{1})).build()); fail(optimizer); } catch (DimensionMismatchException e) { //expected } }
Example #11
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testInconsistentSizes1() { try { LinearProblem problem = new LinearProblem(new double[][]{{1, 0}, {0, 1}}, new double[]{-1, 1}); //TODO why is this part here? hasn't it been tested already? Optimum optimum = optimizer.optimize(problem.getBuilder().build()); Assert.assertEquals(0, optimum.getRMS(), TOl); assertEquals(TOl, optimum.getPoint(), -1, 1); //TODO move to builder test optimizer.optimize( problem.getBuilder().weight(new DiagonalMatrix(new double[]{1})).build()); fail(optimizer); } catch (DimensionMismatchException e) { //expected } }
Example #12
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testInconsistentSizes2() { try { LinearProblem problem = new LinearProblem(new double[][]{{1, 0}, {0, 1}}, new double[]{-1, 1}); Optimum optimum = optimizer.optimize(problem.getBuilder().build()); Assert.assertEquals(0, optimum.getRMS(), TOl); assertEquals(TOl, optimum.getPoint(), -1, 1); //TODO move to builder test optimizer.optimize( problem.getBuilder() .target(new double[]{1}) .weight(new DiagonalMatrix(new double[]{1})) .build() ); fail(optimizer); } catch (DimensionMismatchException e) { //expected } }
Example #13
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testMoreEstimatedParametersSimple() { LinearProblem problem = new LinearProblem(new double[][] { { 3, 2, 0, 0 }, { 0, 1, -1, 1 }, { 2, 0, 1, 0 } }, new double[] { 7, 3, 5 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 7, 6, 5, 4 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); }
Example #14
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected=DimensionMismatchException.class) public void testInconsistentSizes1() { LinearProblem problem = new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, new double[] { -1, 1 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1 })) .withStartPoint(new double[] { 0, 0 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); Assert.assertEquals(-1, optimum[0], 1e-10); Assert.assertEquals(1, optimum[1], 1e-10); optimizer.withWeight(new DiagonalMatrix(new double[] { 1 })).optimize(); }
Example #15
Source File: DecomposeSingularValuesIntegrationTest.java From gatk-protected with BSD 3-Clause "New" or "Revised" License | 6 votes |
private void assertSVDValues(final File outputFileV, final File outputFileS, final File outputFileU) { try { final ReadCountCollection rcc = ReadCountCollectionUtils.parse(CONTROL_PCOV_FULL_FILE); final SVD svd = SVDFactory.createSVD(rcc.counts()); final RealMatrix sDiag = new DiagonalMatrix(svd.getSingularValues()); assertOutputFileValues(outputFileU, svd.getU()); assertOutputFileValues(outputFileS, sDiag); assertOutputFileValues(outputFileV, svd.getV()); assertUnitaryMatrix(svd.getV()); assertUnitaryMatrix(svd.getU()); Assert.assertTrue(MatrixUtils.isSymmetric(sDiag, 1e-32)); } catch (final IOException ioe) { Assert.fail("Could not open test file: " + CONTROL_PCOV_FULL_FILE, ioe); } }
Example #16
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testQRColumnsPermutation() { LinearProblem problem = new LinearProblem(new double[][] { { 1, -1 }, { 0, 2 }, { 1, -2 } }, new double[] { 4, 6, 1 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 0, 0 }); PointVectorValuePair optimum = optimizer.optimize(); Assert.assertEquals(0, optimizer.computeRMS(optimum.getPoint()), 1e-10); Assert.assertEquals(7, optimum.getPoint()[0], 1e-10); Assert.assertEquals(3, optimum.getPoint()[1], 1e-10); Assert.assertEquals(4, optimum.getValue()[0], 1e-10); Assert.assertEquals(6, optimum.getValue()[1], 1e-10); Assert.assertEquals(1, optimum.getValue()[2], 1e-10); }
Example #17
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testNoDependency() { LinearProblem problem = new LinearProblem(new double[][] { { 2, 0, 0, 0, 0, 0 }, { 0, 2, 0, 0, 0, 0 }, { 0, 0, 2, 0, 0, 0 }, { 0, 0, 0, 2, 0, 0 }, { 0, 0, 0, 0, 2, 0 }, { 0, 0, 0, 0, 0, 2 } }, new double[] { 0, 1.1, 2.2, 3.3, 4.4, 5.5 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1, 1, 1, 1 })) .withStartPoint(new double[] { 0, 0, 0, 0, 0, 0 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); for (int i = 0; i < problem.target.length; ++i) { Assert.assertEquals(0.55 * i, optimum[i], 1e-10); } }
Example #18
Source File: AbstractLeastSquaresOptimizerTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testComputeCost() throws IOException { final StatisticalReferenceDataset dataset = StatisticalReferenceDatasetFactory.createKirby2(); final double[] a = dataset.getParameters(); final double[] y = dataset.getData()[1]; final double[] w = new double[y.length]; Arrays.fill(w, 1d); StatisticalReferenceDataset.LeastSquaresProblem problem = dataset.getLeastSquaresProblem(); final LevenbergMarquardtOptimizer optim = LevenbergMarquardtOptimizer.create() .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(y) .withWeight(new DiagonalMatrix(w)) .withStartPoint(a); final double expected = dataset.getResidualSumOfSquares(); final double cost = optim.computeCost(optim.computeResiduals(optim.getModel().value(optim.getStart()))); final double actual = cost * cost; Assert.assertEquals(dataset.getName(), expected, actual, 1e-11 * expected); }
Example #19
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testCircleFittingGoodInit() { CircleVectorial circle = new CircleVectorial(); double[][] points = circlePoints; double[] target = new double[points.length]; Arrays.fill(target, 0); double[] weights = new double[points.length]; Arrays.fill(weights, 2); for (int i = 0; i < points.length; ++i) { circle.addPoint(points[i][0], points[i][1]); } T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(circle.getModelFunction(), circle.getModelFunctionJacobian()) .withTarget(target) .withWeight(new DiagonalMatrix(weights)) .withStartPoint(new double[] { 0, 0 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(-0.1517383071957963, optimum[0], 1e-6); Assert.assertEquals(0.2074999736353867, optimum[1], 1e-6); Assert.assertEquals(0.04268731682389561, optimizer.computeRMS(optimum), 1e-8); }
Example #20
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testOneSet() { LinearProblem problem = new LinearProblem(new double[][] { { 1, 0, 0 }, { -1, 1, 0 }, { 0, -1, 1 } }, new double[] { 1, 1, 1}); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 0, 0, 0 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); Assert.assertEquals(1, optimum[0], 1e-10); Assert.assertEquals(2, optimum[1], 1e-10); Assert.assertEquals(3, optimum[2], 1e-10); }
Example #21
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected=DimensionMismatchException.class) public void testInconsistentSizes1() { LinearProblem problem = new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, new double[] { -1, 1 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1 })) .withStartPoint(new double[] { 0, 0 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); Assert.assertEquals(-1, optimum[0], 1e-10); Assert.assertEquals(1, optimum[1], 1e-10); optimizer.withWeight(new DiagonalMatrix(new double[] { 1 })).optimize(); }
Example #22
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test(expected=ConvergenceException.class) public void testNonInvertible() throws Exception { LinearProblem problem = new LinearProblem(new double[][] { { 1, 2, -3 }, { 2, 1, 3 }, { -3, 0, -9 } }, new double[] { 1, 1, 1 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 0, 0, 0 }); optimizer.optimize(); }
Example #23
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testMoreEstimatedParametersSimple() { LinearProblem problem = new LinearProblem(new double[][] { { 3, 2, 0, 0 }, { 0, 1, -1, 1 }, { 2, 0, 1, 0 } }, new double[] { 7, 3, 5 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 7, 6, 5, 4 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); }
Example #24
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testRedundantEquations() { LinearProblem problem = new LinearProblem(new double[][] { { 1, 1 }, { 1, -1 }, { 1, 3 } }, new double[] { 3, 1, 5 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 1, 1 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); Assert.assertEquals(2, optimum[0], 1e-10); Assert.assertEquals(1, optimum[1], 1e-10); }
Example #25
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testInconsistentEquations() { LinearProblem problem = new LinearProblem(new double[][] { { 1, 1 }, { 1, -1 }, { 1, 3 } }, new double[] { 3, 1, 4 }); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 1, 1 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertTrue(optimizer.computeRMS(optimum) > 0.1); }
Example #26
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
@Test public void testCircleFittingGoodInit() { CircleVectorial circle = new CircleVectorial(); double[][] points = circlePoints; double[] weights = new double[points.length]; Arrays.fill(weights, 2); for (int i = 0; i < points.length; ++i) { circle.addPoint(points[i][0], points[i][1]); } final double[] start = {0, 0}; Optimum optimum = optimizer.optimize( builder(circle).weight(new DiagonalMatrix(weights)).start(start).build()); assertEquals(1e-6, optimum.getPoint(), -0.1517383071957963, 0.2074999736353867); Assert.assertEquals(0.04268731682389561, optimum.getRMS(), 1e-8); }
Example #27
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 5 votes |
public void doTestStRD(final StatisticalReferenceDataset dataset, final double errParams, final double errParamsSd) { final double[] w = new double[dataset.getNumObservations()]; Arrays.fill(w, 1); final double[][] data = dataset.getData(); final double[] initial = dataset.getStartingPoint(0); final StatisticalReferenceDataset.LeastSquaresProblem problem = dataset.getLeastSquaresProblem(); final T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(data[1]) .withWeight(new DiagonalMatrix(w)) .withStartPoint(initial); final double[] actual = optimizer.optimize().getPoint(); for (int i = 0; i < actual.length; i++) { double expected = dataset.getParameter(i); double delta = FastMath.abs(errParams * expected); Assert.assertEquals(dataset.getName() + ", param #" + i, expected, actual[i], delta); } }
Example #28
Source File: AbstractLeastSquaresOptimizerAbstractTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Test public void testTwoSets() { double epsilon = 1e-7; LinearProblem problem = new LinearProblem(new double[][] { { 2, 1, 0, 4, 0, 0 }, { -4, -2, 3, -7, 0, 0 }, { 4, 1, -2, 8, 0, 0 }, { 0, -3, -12, -1, 0, 0 }, { 0, 0, 0, 0, epsilon, 1 }, { 0, 0, 0, 0, 1, 1 } }, new double[] { 2, -9, 2, 2, 1 + epsilon * epsilon, 2}); T optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(getMaxIterations()) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1, 1, 1, 1 })) .withStartPoint(new double[] { 0, 0, 0, 0, 0, 0 }); double[] optimum = optimizer.optimize().getPoint(); Assert.assertEquals(0, optimizer.computeRMS(optimum), 1e-10); Assert.assertEquals(3, optimum[0], 1e-10); Assert.assertEquals(4, optimum[1], 1e-10); Assert.assertEquals(-1, optimum[2], 1e-10); Assert.assertEquals(-2, optimum[3], 1e-10); Assert.assertEquals(1 + epsilon, optimum[4], 1e-10); Assert.assertEquals(1 - epsilon, optimum[5], 1e-10); }
Example #29
Source File: LeastSquaresFactory.java From astor with GNU General Public License v2.0 | 5 votes |
/** * Computes the square-root of the weight matrix. * * @param m Symmetric, positive-definite (weight) matrix. * @return the square-root of the weight matrix. */ private static RealMatrix squareRoot(final RealMatrix m) { if (m instanceof DiagonalMatrix) { final int dim = m.getRowDimension(); final RealMatrix sqrtM = new DiagonalMatrix(dim); for (int i = 0; i < dim; i++) { sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i))); } return sqrtM; } else { final EigenDecomposition dec = new EigenDecomposition(m); return dec.getSquareRoot(); } }
Example #30
Source File: LevenbergMarquardtOptimizerTest.java From astor with GNU General Public License v2.0 | 5 votes |
@Override @Test(expected=SingularMatrixException.class) public void testNonInvertible() { /* * Overrides the method from parent class, since the default singularity * threshold (1e-14) does not trigger the expected exception. */ LinearProblem problem = new LinearProblem(new double[][] { { 1, 2, -3 }, { 2, 1, 3 }, { -3, 0, -9 } }, new double[] { 1, 1, 1 }); final LevenbergMarquardtOptimizer optimizer = createOptimizer() .withMaxEvaluations(100) .withMaxIterations(20) .withModelAndJacobian(problem.getModelFunction(), problem.getModelFunctionJacobian()) .withTarget(problem.getTarget()) .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1 })) .withStartPoint(new double[] { 0, 0, 0 }); final double[] optimum = optimizer.optimize().getPoint(); Assert.assertTrue(FastMath.sqrt(optimizer.getTarget().length) * optimizer.computeRMS(optimum) > 0.6); optimizer.computeCovariances(optimum, 1.5e-14); }